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Περίληψη

Δοθέντος ενός γραφήματος με βάρη στις κορυφές του ως είσοδο, το (έμβαρο)

πρόβλημα του Ακυκλου Επαγόμενου Υπογραφήματος (FVS) ζητά την εύρεση
ενός ελαχίστου βάρους υποσυνόλου των κορυφών του γραφήματος εισόδου των

οποίων η αφαίρεση από αυτό έχει ως αποτέλεσμα αυτό να μην έχει πλέον επαγόμε-

νο κύκλο. Το FVS βρίσκεται μεταξύ των κλασσικών προβλημάτων της Αλγοριθ-
μικής Θεωρίας Γραφημάτων και έχει βρει πολλές εφαρμογές σε άλλα γνωστικά

πεδία με το πέρασμα των χρόνων, με εφαρμογές στην ικανοποίηση περιορισμών

και στην Μπεϊσιανή συμπερασματολογία, στην οπτική δικτύωση και στην υπολο-

γιστική βιολογία να είναι μερικές πρόσφατες προσθήκες. Ως φυσικό επακόλουθο,

οι αλγόριθμοι επίλυσης του FVS ήταν πάντα αντικείμενο ενεργής έρευνας. Τόσο
ακριβείς όσο και προσεγγιστικοί αλγόριθμοι έχουν προταθεί για την επίλυση του

FVS σε γενικά γραφήματα. Το FVS είναι NP-πλήρες στα γενικά γραφήματα,
στα επίπεδα γραφήματα, στα διμερή γραφήματα και στα επίπεδα διμερή γραφήμα-

τα. Συνεπώς, το FVS θεωρείται απίθανο να είναι πολυωνυμικά επιλύσιμο σε αυτές
τις κλάσεις γραφημάτων. Αναφέρουμε επίσης πως το FVS είναι FPT στα γενικά
γραφήματα. Το FVS είναι πολυωνυμικά επιλύσιμο στα γραφήματα διαστημάτων
σε Ο(n + m) χρόνο, στα γραφήματα μεταθέσεων και στα γραφήματα τραπεζίων
σε Ο(nm) χρόνο, στα συνσυγκρίσιμα γραφήματα και στα κυρτά διμερή γραφήμα-
τα σε Ο(n2m), στα AT-ελεύθερα γραφήματα σε Ο(n8m2) χρόνο, στα χορδικά
γραφήματα σε Ο(n6) χρόνο και στα γραφήματα φραγμένου πλάτους κλίκας σε
Ο(n) χρόνο, όπου n και m είναι το πλήθος των κορυφών και των ακμών του
γραφήματος εισόδου αντίστοιχα.

Στην παρούσα διατριβή, μελετούμε μία γενίκευση του FVS που καλείται το
πρόβλημα του Στοχευμένα Ακυκλου Επαγόμενου Υπογραφήματος. Δοθέντων
ενός γραφήματος με βάρη στις κορυφές του και ένα υποσύνολο S των κορυφών του
ως είσοδο, το (έμβαρο) πρόβλημα του Στοχευμένα Ακυκλου Υπογραφήματος
(SFVS) ζητά την εύρεση ενός ελαχίστου βάρους υποσυνόλου των κορυφών του
γραφήματος εισόδου των οποίων η αφαίρεση από αυτό έχει ως αποτέλεσμα αυτό
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να μην έχει πλέον επαγόμενο κύκλο που να περνά από κορυφή που ανήκει στο S.
Εφόσον οι ενδεχόμενες γενικεύσεις των εφαρμογών του FVS μπορεί να απαιτούν
την επίλυση μίας γενίκευσης του FVS στη θέση του ίδιου του FVS, η έλλειψη α-
ποδοτικών αλγορίθμων για την επίλυση του SFVS μπορεί να αποτελεί τροχοπέδη
στην πραγματοποίησή τους. Αυτή η παρατήρηση μας ωθεί να επιδιώξουμε την με-

λέτη του SFVS. Τόσο ακριβείς όσο και προσεγγιστικοί αλγόριθμοι έχουν επίσης
προταθεί και για την επίλυση του SFVS σε γενικά γραφήματα. Το γεγονός ότι το
SFVS αποτελεί γενίκευση του FVS συνεπάγεται ότι είναι και αυτό NP-πλήρες
στα γενικά γραφήματα, στα επίπεδα γραφήματα, στα διμερή γραφήματα και στα

επίπεδα διμερή γραφήματα. Η πρώτη σημαντική διαφορά στην συμπεριφορά των

δύο προβλημάτων είναι ότι, σε αντίθεση με το FVS το οποίο είναι P στα χορδικά
γραφήματα, έχει δειχθεί ότι το SFVS είναι NP-πλήρες στα διαχωρίσιμα γραφήμα-
τα, μία υποκλάση των χορδικών γραφημάτων. Επίσης σε αντίθεση με το FVS,
δεν υπάρχουν πολυωνυμικά αποτέλεσματα όπου η είσοδος περιορίζεται σε κλάσεις

γραφημάτων αναφορικά με το SFVS στη βιβλιογραφία. Στην παρούσα διατριβή,
προτείνουμε νέους αλγορίθμους δυναμικού προγραμματισμού για την επίλυση του

SFVS στα γραφήματα διαστημάτων σε Ο(n + m + l) χρόνο και στα γραφήματα
μεταθέσεων σε Ο(m3) χρόνο, όπου n, m και l ∈ Ο(n3) είναι το πλήθος των
κορυφών, των ακμών και των επαγόμενων τριγώνων του γραφήματος εισόδου

αντίστοιχα—τα πρώτα πολυωνυμικά αποτελέσματα αναφορικά με το SFVS.

Η παρούσα διατριβή είναι δομημένη ως ακολούθως: Το Κεφάλαιο 1 είναι ε-

ίναι εισαγωγικό κεφάλαιο που εφοδιάζει όλους τους απαραίτητους ορισμούς από

την Θεωρία Πολυκλοκότητας και την Θεωρία Γραφημάτων. Επίσης φιλοξενεί

πληροφορίες για τα FVS και SFVS. Στο Κεφάλαιο 2, δίνουμε τους καλύτερους
πολυωνυμικούς αλγορίθμους δυναμικού προγραμματισμού για την επίλυση του

FVS στα γραφήματα διαστημάτων και στα γραφήματα μεταθέσεων που υπάρχουν
στη βιβλιογραφία και στη συνέχεια προτείνουμε νέους αλγορίθμους δυναμικού

προγραμματισμού που παρουσιάζουν την ίδια χρονική πολυπλοκότητα και αποτε-

λούν τους προπομπούς των αλγορίθμων μας για την επίλυση του SFVS στις ίδιες
κλάσεις γραφημάτων. Το Κεφάλαιο 3 φιλοξενεί τους προαναφερθέντες πολυωνυ-

μικούς αλγορίθμους δυναμικού προγραμματισμού μας για την επίλυση του SFVS
στα γραφήματα διαστημάτων και στα γραφήματα μεταθέσεων. Το Κεφάλαιο 4

ολοκληρώνει την παρούσα διατριβή με μία ενημέρωση της κατάστασης των FVS
και SFVS και μία συζήτηση πάνω σε μελλοντική έρευνα και ανοικτά προβλήματα
αναφορικά με το SFVS. Τέλος, υπάρχει το Παράρτημα Α, ένα παράρτημα που
φιλοξενεί ορισμούς μαθηματικών εννοιών που χρησιμοποιούνται στο κύριο μέρος

της παρούσας διατριβής και οι οποίες μελετώνται σε πεδία των μαθηματικών εκτός

της Θεωρίας Πολυπλοκότητας και της Θεωρίας Γραφημάτων.



Abstract

Given a graph with weights on its vertices as input, the (weighted) Feed-
back Vertex Set (FVS) problem asks for a minimum-weight subset of the
input graph’s vertices whose removal from it results in it no longer having an
induced cycle. FVS finds itself among the classical problems of Algorithmic
Graph Theory and has found many applications in other fields of study over
the years, with applications in constraint satisfaction and Bayesian inference,
optical networking and computational biology being some recent additions.
As a natural consequence, FVS solving algorithms have always been a sub-
ject of active research. Both exact and approximation algorithms have been
proposed for solving FVS on general graphs. FVS is NP-complete on general
graphs, planar graphs, bipartite graphs and planar bipartite graphs. There-
fore, FVS is considered unlikely to be polynomially solvable on those graphs
classes. We also mention that FVS is FPT on general graphs. FVS is poly-
nomially solvable on interval graphs in O(n+m) time, on permutation graphs
and trapezoid graphs in O(nm) time, on cocomparability graphs and convex
bipartite graphs in O(n2m) time, on AT-free graphs in O(n8m2) time, on
chordal graphs in O(n6) time and on graphs of bounded cliquewidth in O(n)
time, where n and m are the number of vertices and edges of the input graph
respectively.

In this thesis, we study a generalization of FVS called the Subset Feed-
back Vertex Set problem. Given a graph with weights on its vertices and a
subset S of its vertices as input, the (weighted) Subset Feedback Vertex
Set (SFVS) problem asks for a minimum-weight subset of the input graph’s
vertices whose removal from it results in it no longer having an induced cycle
that passes through a vertex which is an element of S. Since potential gener-
alizations of FVS applications may require solving a generalization of FVS in
place of FVS itself, the absence of efficient SFVS solving algorithms may ham-
per their realisation. The above observation compels us to pursue the study
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of SFVS. Both exact and approximation algorithms have also been proposed
for solving SFVS on general graphs. The fact that SFVS is a generalization of
FVS implies that it is NP-complete on general graphs, planar graphs, bipar-
tite graphs and planar bipartite graphs as well. The first significant difference
in the behaviour of the two problems is that, unlike FVS which is P on chordal
graphs, SFVS was shown to be NP-complete on split graphs, a subclass of
chordal graphs. Also unlike FVS, there is no polynomial result where the in-
put is restricted to graph classes regarding SFVS to be found in literature.
In this thesis, we propose novel dynamic programming algorithms for solving
SFVS on interval graphs in O(n+m+ l) time and on permutation graphs in
O(m3) time, where n, m and l ∈ O(n3) are the number of vertices, edges and
induced triangles of the input graph respectively—the first polynomial results
regarding SFVS.

This thesis is structured as follows: Chapter 1 is an introductory chapter
that supplies all the necessary definitions from Complexity Theory and Graph
Theory. It also hosts information on FVS and SFVS. In Chapter 2, we give
the best polynomial FVS solving dynamic programming algorithms on interval
graphs and permutation graphs found in literature and subsequently propose
novel dynamic programming algorithms which excibit the same time complex-
ity and are the precursors of our algorithms for solving SFVS on the same
graph classes. Chapter 3 hosts our aforementioned polynomial SFVS solving
dynamic programming algorithms on interval graphs and permutation graphs.
Chapter 4 concludes this thesis with an update on the state of FVS and SFVS
and a talk on future work and open problems regarding SFVS. Lastly, there is
Appendix A, an appendix hosting definitions of mathematical concepts that
are used in the main matter of this thesis and which are subjects of fields of
mathematics other that Complexity Theory and Graph Theory.
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Chapter 1

Preliminaries

1.1 Complexity Theory

A central question in Computer Science is how to identify which is the
“fastest” way to solve a problem. That is, given two algorithms A1 and A2

that solve the same problem P , can we say that A1 is in some sense “faster”
than A2 in solving P for all its instances? Complexity Theory gives us a
framework to answer this question mathematically.

In order to compare the speed of two algorithms, we first need to define how
to determine an algorithm’s speed. In Complexity Theory, we do not involve
ourselves with the speed of algorithms per se; we use the amount of time that
they require to be completed instead. To ensure that our measurements do
not depend on the specifics of the hardware that we might be using at any
given time, for otherwise our comparisons would be invalid, we consider the
abstraction that performing an elementary operation requires exactly one time
unit.

A (computational) time complexity function of an algorithm is a function
from N to N that maps an input size to the amount of time the algorithm
requires to be completed when given an input of that size under a certain
scenario, that is, which satisfies a certain assumption.

• Under the best-case scenario, the input size is maped to the least amount
of time the algorithm may require to be completed when given an input
of that size.

1



2 CHAPTER 1. PRELIMINARIES

• Under the average-case scenario, the input size is maped to the average
amount of time the algorithm may require to be completed when given
an input of that size.

• Under the worst-case scenario, the input size is maped to the greatest
amount of time the algorithm may require to be completed when given
an input of that size.

Even though all three aforementioned scenarios provide insight into an al-
gorithm’s performance, the worst-case scenario is the one that gives us a per-
formance guarantee; an algorithm will always be completed faster than or as
fast as it does under the worst-case scenario. In this thesis, we exclusively
study the time complexity of algorithms under the worst case scenario.

Practice shows that being faster than others on small input sizes is irrelevant
for an algorithm; algorithms are so fast on small input sizes that their perfor-
mance differences in that regard are negligible. What we need is algorithms
whose time complexity scales as best as possible with the input size, that is,
it grows as slow as possible as the input size grows; given two algorithms A1

and A2 that solve the same problem P , if A1’s time complexity scales better
with the input size than A2’s , A1 will eventually outperform A2 when the
input size becomes sufficiently large—exactly where it counts.

1.1.1 Asymptotic Notation

We use f(n) to denote a function f : N→ N, n 7→ f(n).

Definition 1.1.1 (Big O). A function f(n) is (in) O(g(n)) if there are con-
stants N ∈ N and c ∈ R such that f(n) ≤ cg(n) for all n ∈ N greater or equal
to N or, equivalently, if

lim
n→∞

f(n)

g(n)
<∞.

Definition 1.1.2 (Big Omega). A function f(n) is (in) Ω(g(n)) if there are
constants N ∈ N and c ∈ R such that cg(n) ≤ f(x) for all n ∈ N greater or
equal to N or, equivalently, if

lim
n→∞

g(n)

f(n)
<∞.

Definition 1.1.3 (Big Theta). A function f(n) is (in) Θ(g(n)) if it is both
O(g(n)) and Ω(g(n)).
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The asymptotic notations of O, Ω and Θ essentially define classes of func-
tions that asymptotically grow at most, at least and exactly as fast as g(n)
respectively. Thus, we may use asymptotic notation to compare algorithms
in terms of time complexity. If the time complexity of an algorithm (as a
function) is of a certain kind, then we may say that the algorithm itself is
of the same kind. For example, we may say that an algorithm is polynomial
if its time complexity is O(p(n)) for some polynomial function p(n) where n
denotes the size of its input.

1.1.2 Complexity Classes

For solving a particular problem, however, many algorithms excibiting many
different time complexities may exist. This implies that the time complexity
of a problem itself cannot not be determined from the time complexity of any
single algorithm solving it. We define the time complexity of a problem to be
the best among the time complexities of all algorithms that solve it. Since, of
course, we may not already know all algorithms solving a particular problem,
we consider its time complexity to be the best among the time complexities
of all algorithms solving it that we already known.

In order to take advantage of the fact that problems requiring the same
time complexity to be solved may also excibit similar structure and vice versa,
we define complexity classes of problems. Complexity classes are collections
of problems and form a hierarchy according to the order of set inclusion. We
subseqeuntly define all complexity classes mentioned in this thesis. For more
information on complexity, complexity classes and where many problems are
currently standing, the reader may refer to [20].

Polynomial

A problem is (in) Polynomial if there is a polynomial algorithm solving it.

Non-deterministic Polynomial

A problem is (in) Non-deterministic Polynomial if there is a polynomial
algorithm solving its solution-verification problem, that is, the problem of
verifying whether a candidate solution indeed is a solution.
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Figure 1.1: Euler diagrams of the P, NP, NP-hard and NP-complete com-
plexity classes (a) if P 6= NP and (b) if P = NP.

Apolynomial reduction of a problem P1 to another problem P2 is a polyno-
mial algorithm transforming any instance of P1 to an instance of P2.

A problem is (in) NP-hard if there is a polynomial reduction of P to it for
all P ∈ NP. A problem is (in) NP-complete if it is both NP and NP-hard.

The non-deterministic complexity classes play a central role in Complexity
Theory, because many important problems were shown to be in them. What is
arguably the most famour open problem in all Computer Science, the P versus
NP problem, asks whether P is equal to NP or not. Figure 1.1 illustrates
those two possibilities.

Fixed Parameter Tractable

We may choose to consider the time complexity of an algorithm (and con-
sequently of a problem) to be a function of any number of parameters of its
input instead of the typical choice of only the size of its input.

A problem is (in) F ixed Parameter T ractable if there is an O(f(k)p(n))
algorithm solving it for an arbitrary function f(k) and a polynomial function
p(n) where n and k are the size and another parameter of its input respectively,
that is, there is an algorithm solving it which is polynomial provided a certain
parameter of its input other than its size is considered fixed.
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Figure 1.2: Petersen’s graph.

1.2 Graph Theory

The term ‘graph’ in a mathematical context is most commonly used to refer
to the graphical representation of a function. In the specific context of Graph
Theory, however, the term ‘graph’ is used to refer to objects like the one shown
in Figure 1.2. In this section, we provide definitions regarding those objects
including characteristics that they might excibit, relations that they may have
to one another and collections that they might be part of.

1.2.1 Fundamental Concepts

A (simple undirected) graph is an ordered pair G = (V,E) of sets such that
E ⊆ {{u, v} : u, v ∈ V and u 6= v}. V is called the vertex set (and its elements
are called vertices) of G and E is called the edge set (and its elements are called
edges) of G. We commonly use n and m to denote |V | and |E| respectively.
The graphical representantion of a graph is shown in Figure 1.2; a vertex of
the graph is represented by a point and an edge between two vertices by a line
segment connecting the two points that represent the vertices.

We say that an edge between two vertices directly connects those vertices;
the vertices it directly connects are called adjacent or neighbouring. The neigh-
bourhood of a vertex i in a graph is the set of all other vertices that are adjacent
to i in the graph. We use N(i) to denote the neighbourhood of i. We say that
a vertex that has an empty neighbourhood is isolated.

A path between two vertices in a graph is a (finite) sequence of vertices of
the graph such that the two vertices occupy the first and last positions in the
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sequence and all vertices that occupy subsequent positions in the sequence are
adjacent. We say that a path between two vertices connects those vertices. A
graph is connected if all its vertices are pairwise connected. For a connected
graph, since no vertex is isolated, m ∈ Ω(n). The length of a path is its
length as a sequence minus one. The distance of two vertices in a graph is the
minimum among all the lengths of paths between them in the graph.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ {{u, v} ∈ E : u, v ∈ V ′}. The subgraph of G induced
by a set X ⊆ V is the subgraph G′ = (V ′, E′) of G such that V ′ = X and
E′ = {{u, v} ∈ E : u, v ∈ V ′}. We use G[X] to denote the subgraph of G
induced by X.

1.2.2 Graph Classes

In order to handle graphs exhibiting common structure together, we define
graph classes. Graph classes are collections of graphs and form an hierarchy
according to the order of set inclusion.

Most graph classes have more that one equivalent definitions, called charac-
terizations. Researchers are always on the lookout for new characterizations of
known graph classes, because a problem may be easier and/or faster to solve
on a graph class when using one of its characterizations instead of another. A
common and much sought after type of characterization is for the members of
a class to be C-free where C is a collection of graphs. In that characterization,
C acts as a list of forbidden induced subgraphs; members of the class have no
induced subgraph listed in C. Another sought after characterization is that of
an intesection model. An intersection model of a graph is a collection of sets
for which there is a one-to-one correspondence from the sets of the collection
to the vertices of the graph such that two vertices are adjacent if and only if
their corresponding sets are intersecting.

We subsequently characterize all graph classes mentioned in this thesis. For
more information on these graph classes and more, the reader may refer to [6].

Independent Sets

An independent set is a graph that has no edge.
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(a) 〈0, 1, 2, 3, 4, 5〉.
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(b) An even cycle having
an odd chord.
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(c) A clique of six ver-
tices.

Figure 1.3

Cliques

A clique is a graph that has all possible edges between its vertices.

Cycles

A (chordless) cycle is a graph G for which there is a one-to-one correspon-
dence from the integers of Zn to the vertices of G such that two vertices are
adjacent if and only if their corresponding integers differ by 1 modulo n. If
i 7→ vi for all i ∈ Zn, then G = 〈v0, v1, . . . , vn−1〉. An even (odd) cycle is a
cycle of an even (odd) number of vertices. In this thesis, we call a cycle of
three vertices a triangle and a cycle of four vertices a square.

A chord is an edge that G has in addition to those of the chordless cycle.
An odd (even) chord is a chord between two vertices whose distance in the
chordless cycle is odd (even).

Forests

The class of forests is the class of cycle-free graphs; that is, a forest is a
graph that has no induced cycle.

Planar Graphs

A planar graph is a graph that can be graphically represented on a plane
such that the line segments representing its edges are pairwise disjoint.
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Bipartite Graphs

A bipartite graph is a graph G = (V,E) for which there is a partition of V
into A and B such that G[A] and G[B] are both independent sets.

Convex Bipartite Graphs

A convex bipartite graph is a bipartite graph G = (A,B,E) for which there
is a total order < of A such that every B-vertice has all its neighbouring
A-vertices be consecutive with respect to <.

Convex bipartite graphs form a subclass of bipartite graphs.

Chordal Graphs

The class of chordal graphs is the class of {〈v0, v1, . . . , vn−1〉 : n ≥ 4}-
free graphs; that is, a chordal graph is a graph whose induced cycles are all
triangles, or, equivalently, a graph whose induced cycles that aren’t triangles
have a chord.

Strongly Chordal Graphs

A strongly chordal graph is a chordal graph whose induced even cycles have
an odd chord.

Strongly chordal graphs form a subclass of chordal graphs.

Split graphs

A split graph is a graph G = (V,E) for which there is a partition of V into
A and B such that G[A] is a clique and G[B] is an independent sets.

Split graphs form a subclass of chordal graphs.

AT-free Graphs

An asteroidal triple of a graph G are three vertices of G for which there
is a path in G between any two of them such that it does not pass through
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the neighbourhood of the third one. An AT-free graph is a graph that has no
asteroidal triple.

Cocomparability Graphs

A cocomparability graph is a graph for which there is an irreflexive and
transitive relation R on its vertex set such that two vertices are adjacent if
and only if they are not comparable with respect to R.

Cocomparability graphs form a subclass of both {〈v0, v1, . . . , vn−1〉 : n ≥ 5}-
free graphs and AT-free graphs.

Trapezoid Graphs

A trapezoid graph is a graph G for which there is a collection C of trapezoids
on the plane that all have two of their edges be line segments of the same two
parallel lines and a one-to-one correspondence of trapezoids of C to vertices
of G such that two vertices are adjacent if and only if their corresponding
trapezoids are intersecting.

Trapezoid graphs form a subclass of cocomparability graphs.

Permutation Graphs

A permutation graph is a graph G for which there is a permutation π :
{1, 2, . . . , n} → {1, 2, . . . , n} and a one-to-one correspondence of integers of
{1, 2, . . . , n} to vertices of G such that two vertices are adjacent if and only if
π reverses their corresponding integers’ relative order.

Permutation graphs form a subclass of trapezoid graphs.

Interval Graphs

An interval graph is a graph G for which there is a collection C of closed
intervals of R and a one-to-one correspondence of intervals of C to vertices of G
such that two vertices are adjacent if and only if their corresponding intervals
are intersecting.

Interval graphs form a subclass of both chordal graphs and permutation
graphs.
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1.2.3 Graph Parameters

Many important NP-complete problems are graph-related. To help extend
the study of those problems’ time complexity to complexity measures beyond
simply graph size, many graph parameters, measures of various aspects of a
graph’s structure, were devised. One such measure mentioned in this thesis is
cliquewidth, which was first introduced by Courcelle et al. [9, 10].

Cliquewidth

The cliquewidth of a graph is the minimum number of distinct labels needed
to construct a copy of it with labeled vertices when the only available opera-
tions to do so are

• creating a single-vertex graph with its vertex labeled i,

• the disjoint union of two thusly-constructed graphs with labeled vertices,

• changing the labels of all vertices labeled i on a thusly-constructed graph
with labeled vertices from i to j and

• directly connecting all vertices labeled i on a thusly-constructed graph
with labeled vertices to all its vertices labeled j.

1.3 The Problems

The two problems we involve ourselves with in this thesis are both special
cases, called variants by some authors, of the Feedback Set (FS) problem.
Given a graph G as input, all FS variants ask for a set of certain elements
of G such that certain induced cycles of G are no longer induced cycles once
those elements are removed. We state the formal definitions of the two afore-
mentioned problems and information regarding their tractability below. For
more information on recent developments in FS related research, the reader
may consult [15].

1.3.1 Feedback Vertex Set

A feedback vertex set of a graph G = (V,E) is a set U ⊆ V such that
G[V \ U ] is a forest.
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Given a graph G = (V,E) (along with a weight function w : V → R)
as input, the (weighted) Feedback Vertex Set (FVS) problem asks for a
feedback vertex set of G that has minimum cardinality (weight) among all
feedback vertex sets of G.

FVS finds itself among the classical problems of Algorithmic Graph Theory
and has found many applications in other fields of study over the years, with
applications in constraint satisfaction and Bayesian inference [13, 12, 1], optical
networking [22] and computational biology [18] being some recent additions.
As a natural consequence, FVS solving algorithms have always been a subject
of active research. Both exact [16] and approximation [2] algorithms have been
proposed for solving FVS on general graphs.

FVS is NP-complete on general graphs. In fact, it was one of the first
problems that were shown to be NP-complete; it was included in Karp’s list
of 21 NP-complete problems [21]. It is also NP-complete on planar graphs
[20], bipartite graphs [30] and planar bipartite graphs [29]. Therefore, FVS
is considered unlikely to be polynomially solvable on those graph classes. We
also mention that FVS is FPT on general graphs [7].

When a problem is shown to be NP-complete on general graphs, we start
searching for graph classes on which it is P. Research in that regard for
FVS has been fruitious; the list of graph classes on which it was shown to be
polynomially solvable includes interval graphs [27], permutation graphs [24],
trapezoid graphs, cocomparability graphs and convex bipartite graphs [25],
AT-free graphs [23], chordal graphs [8] and graphs of bounded cliquewidth
[28, 19].

Figure 1.4 shows a graphical representation of the hierarchy of most of
the graph classes that we mention in this thesis augmented with the best
known results regarding FVS on them found in literature. For the behaviour
of problems on graph classes, it is not difficult to show the following:

• A problem that is NP-complete on a graph class is also NP-complete
on all superclasses of that graph class.

• An algorithm that solves a problem on a graph class in O(g(n)) time
also solves it on all subclasses of that graph class in O(g(n)) time.

1.3.2 Subset Feedback Vertex Set

Definition 1.3.1. Let G = (V,E) be a graph and S ⊆ V . Then
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Figure 1.4: Best known results regarding FVS on the listed graph classes. An
arrow between two graph classes indicates that the source is a superclass of
the target. Graph classes are colored black if FVS is NP-complete on them,
gray if its behaviour on them is unknown and white if it is P on them. (We
follow this style throughout this thesis.)

• an S-vertex is a vertex that is an element of S,

• an S-cycle is a cycle that has an S-vertex and

• an S-forest is an S-cycle-free graph; that is, an S-forest is a graph that
has no induced S-cycle.

An S-feedback vertex set of a graph G = (V,E) where S ⊆ V is a set U ⊆ V
such that G[V \U ] is an S-forest. Whevener the subset S is unspecified or not
subject to confusion, we use the term subset feedback vertex set instead.

Given a graph G = (V,E) along with a set S ⊆ V (and a weight function
w : V → R) as input, the (weighted) Subset Feedback Vertex Set (SFVS)
problem asks for an S-feedback vertex set of G that has minimum cardinality
(weight) among all S-feedback vertex sets of G.

Both exact [17] and approximation [14] algorithms have also been proposed
for solving SFVS on general graphs. SFVS naturally generalises FVS; we
may solve FVS on a graph G = (V,E) by solving SFVS on G for S = V .
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Figure 1.5: Best known results regarding SFVS on the listed graph classes.

This implies that SFVS is NP-complete on general graphs, planar graphs,
bipartite graphs and planar bipartite graphs as well. We also mention that
SFVS is FPT on general graphs [11].

The first significant difference in the behaviour of the two problems is that,
unlike FVS which is P on chordal graphs, SFVS was shown to beNP-complete
on split graphs, a subclass of chordal graphs [17]. Also unlike FVS, there is
no polynomial result where the input is restricted to graph classes regarding
SFVS to be found in literature.

Figure 1.5 shows a graphical representation of the same hierarchy of graph
classes as Figure 1.4 augmented with the best known results regarding SFVS
on them found in literature.
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Chapter 2

Solving FVS in Polynomial
Time

In this chapter, we present the best know dynamic programming algorithms
for solving FVS on interval graphs [27] and permutation graphs [24] in polyno-
mial time found in literature as well as our own novel dynamic programming
algorithms for solving it on the same graph classes in the same times. These
algorithms do not find a feedback vertex set of the input graph that has mini-
mum weight directly and return it; they find a forest-inducing vertex set of the
input graph that has maximum weight and return the set of all other vertices
instead. Throughout this chapter, we use F to denote the collection of all
induced forests of the input graph.

2.1 Best Known Algorithm on Interval Graphs

In this section we reproduce the O(n+m) dynamic programming algorithm
for solving FVS on interval graphs proposed by Lu and Tang in [27]. Mi-
nor adjustments to definitions, notation and presentation have been made to
improve readability without alteration of the results. All proofs are omitted.

We assume that we are given an interval graph G = (V,E) along with
a corresponding collection of closed intervals of R where all endpoints are
distinct and a weight function w : V → R as input. Wherever maxw is called
in this section, it returns an arbitrary choice that has maximum weight among
all its operands. We add an isolated dummy vertex that has non-positive

15
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weight to G and we add a dummy interval that has minimum right endpoint
to the given collection as its corresponding interval. We consider vertices
of G to be equivalent to their corresponding intervals and to the integers of
{0, 1, . . . , n} that indicate their position when sorted in ascending order of
their corresponding intervals’ right endpoints.

For every vertex i of G, we use a(i) and b(i) to denote its corresponding
interval’s left and right endpoint respectively. We consider the relation on V
that is defined by

i ≤r j ⇐⇒ b(i) ≤ b(j)

for all i, j ∈ V . Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that ≤r is a total order on V . Wherever maxr is called
in this section, it returns the maximum among its operands with respect to
≤r. We define some predecessors with respect to ≤r and the V -sets, which
correspond to the subproblems that Lu and Tang’s [27] dynamic programming
algorithm wants to solve.

Definition 2.1.1 (Predecessors). Let i ∈ V \ {0}. Then

� i = max
r
{h ∈ V : h <r i and {h, i} /∈ E}.

Example 2.1.1. For the interval graph that has

C =

{
I1 = [2, 4], I2 = [1, 6], I3 = [7, 8], I4 = [5, 10],

I5 = [3, 11], I6 = [9, 13], I7 = [12, 14]

}
as a corresponding collection of closed intervals of R, � 6 = 3.

Definition 2.1.2 (V -sets). Let i, j ∈ V such that i <r j. Then

Vi,j = {h ∈ V : h ≤r i} ∪ {j}.

Now, we define the sets that Lu and Tang’s [27] dynamic programming
algorithm computes in order to conpute the forest-inducing vertex set of G
that has maximum weight.

Definition 2.1.3 ([27]). Let i, j ∈ V such that i <b j. Then

• Ai,j = maxw{X ⊆ Vi,j : G[X] ∈ F},

• Bi,j = maxw{X ⊆ Vi,j : G[X] ∈ F and i, j ∈ X} and

• Ci,j = maxw{X ⊆ Vi,j : G[X] ∈ F and j ∈ X}.
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Observe that, since Vn−1,n = V , An−1,n = maxw{X ⊆ V : G[X] ∈ F}. The
following lemmas state how to recursively compute all the sets of Definition
2.1.3.

Lemma 2.1.1 ([27]). Let i, j ∈ V such that i <r j.

(1) If i = 0, then A0,j = maxw {∅, {j}}.

(2) If i 6= 0 and b(i) < a(j), then Aij = maxw {Ai−1,i, Ai−1,i ∪ {j}}.

(3) If i 6= 0 and a(j) < b(i), then Aij = maxw {Ai−1,i, Ai−1,j , Bi,j}.

Lemma 2.1.2 ([27]). Let i, j ∈ V such that i <r j.

(1) If i = 0, then B0,j = {0, j}.

(2) If i 6= 0 and b(i) < a(j), then Bi,j = Ci−1,i ∪ {j}.

(3) If i 6= 0 and a(j) < a(i), then Bi,j = C�i,j ∪ {i}.

(4) If i 6= 0 and a(i) < a(j) < b(i), then Bi,j = C�j,i ∪ {j}.

Lemma 2.1.3 ([27]). Let i, j ∈ V such that i <r j.

(1) If i = 0, then C0,j = {j}.

(2) If i 6= 0 and b(i) < a(j), then Ci,j = Ai−1,i ∪ {j}.

(3) If i 6= 0 and a(j) < b(i), then Ci,j = maxw {Ci−1,j , Bi,j}.

Theorem 2.1.4 ([27]). The dynamic programming algorithm shown in Figure
2.1 returns a feedback vertex set of G that has minimum weight in O(n+m)
time.

2.2 Best Known Algorithm on Permutation Graphs

The first algorithm to solve FVS on permutation graphs was an O(n6) dy-
namic programming algorithm proposed by Brandstädt and Kratsch in [4, 5].
The time complexity was later improved to O(nmm̄) where m̄ is the number of
edges in the input graph’s complement by Brandstädt in [3] and subsequently
to O(nm) by Liang in [24]. In this section we reproduce the O(nm) dynamic
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for i := 0 to n− 1
if i 6= 0 then compute � i of Definition 2.1.1;
for j := i+ 1 to n

compute Bi,j according to Lemma 2.1.2;
compute Ai,j according to Lemma 2.1.1;
compute Ci,j according to Lemma 2.1.3;
if {i, j} /∈ E then break;

end for
end for

return V \An−1,n;

Figure 2.1: Lu and Tang’s [27] dynamic programming algorithm for solving
FVS on an interval graph.

programming algorithm proposed by Liang in [24]. Minor adjustments to def-
initions, notation and presentation have been made to improve readability
without alteration of the results. All proofs are omitted.

We assume that we are given a connected permutation graph G = (V,E)
along with a corresponding permutation π of G and a weight function w : V →
R as input. Wherever maxw is called in this section, it returns an arbitrary
choice that has maximum weight among all its operands. We add an isolated
dummy vertex that has non-positive weight to G and we add 0 7→ 0 to π as
its first column where 0 is its corresponding integer. We consider the vertices
of G to be equivalent to their corresponding integers in π’s domain.

We consider the two relations on V defined by

i ≤t j ⇐⇒ i ≤ j
i ≤b j ⇐⇒ π−1(i) ≤ π−1(j)

for all i, j ∈ V . It is not difficult to show that both ≤t and ≤b are total orders
on V ; they are exactly the orders in which the integers appear on the top and
bottom row of π respectively.

Liang’s [24] dynamic programming algorithm iterates on elements called
ordered crossing vertex pairs. We define the following collections of such ele-
ments:

X = {ij ∈ V 2 : i ≤t j and j ≤b i}

I = {ij ∈ V 2 : i = j} ⊂ X
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Observe that for every ij ∈ X , if i 6= j, then {i, j} ∈ E. We consider the two
relations on X defined by

gh ≤r ij ⇐⇒ g ≤b i and h ≤t j
gh ≤lexr ij ⇐⇒ g <b i or g = i and h ≤t j

for all gh, ij ∈ X . It is not difficult to show that ≤r is a partial order on
X , which we call the right-endpoints product order, whereas ≤lexr is a total
order on X , which we call the and right-endpoints lexicographic order. We
also note that ≤lexr is a linear extention of ≤r. Wherever maxr is called in this
section, it returns the maximum among its operands with respect to ≤r. We
define some predecessors with respect to ≤r and the V -sets, which correspond
to the subproblems that Liang’s [24] dynamic programming algorithm wants
to solve.

Definition 2.2.1 (Predecessors). Let ij ∈ X \ {00}. Then

• 0 ij = maxr{gh ∈ C : gh <r ij and h 6= j},

• 6 ij = maxr{gh ∈ C : gh <r ij and g 6= i},

• < ij = maxr{gh ∈ C : gh <r ij and g 6= i and h 6= j} and

• � ij = maxr{gh ∈ C : gh <r ij and {g, i}, {g, j}, {h, i}, {h, j} /∈ E}.

Example 2.2.1. For the permutation graph that has

π =

(
1 2 3 4 5 6 7 8
2 8 6 3 1 7 4 5

)
as a corresponding permutation of {1, 2, 3, 4, 5, 6, 7, 8}, 0 57 = 56, 6 57 = 47,
< 57 = 46, � 57 = 13 and 0 36,6 36, < 36,� 36 = 22.

Definition 2.2.2 (V -sets). Let ij ∈ X . Then Vij = {h ∈ V : hh ≤r ij}.

Now, we define the sets that Liang’s [24] dynamic programming algorithm
computes in order to compute the forest-inducing vertex set of G that has
maximum weight.

Definition 2.2.3 ([24]). Let ij ∈ X and k ∈ V \ Vij . Then

• Aij = maxw{X ⊆ Vij : G[X] ∈ F},



20 CHAPTER 2. SOLVING FVS IN POLYNOMIAL TIME

• Bij = maxw{X ⊆ Vij : G[X] ∈ F and i, j ∈ X}
provided i 6= j,

• Cij,k = maxw{X ⊆ Vij ∪ {k} : G[X] ∈ F and k ∈ X}
provided i <b k,

• Dij,k = maxw{X ⊆ Vij ∪ {k} : G[X] ∈ F and k ∈ X}
provided j <t k,

• Eij,k = maxw{X ⊆ Vij ∪ {k} : G[X] ∈ F and i, j, k ∈ X}
provided i 6= j, i <b k and k <t j and

• Fij,k = maxw{X ⊆ Vij ∪ {k} : G[X] ∈ F and i, j, k ∈ X}
provided i 6= j, k <b i and j <t k.

Observe that, since V00 = {0} and w(0) ≤ 0, A00 = ∅ and C00,k = D00,k =
{k} for all k ∈ V \ {0} and, since Vπ(n)n = V , Aπ(n)n = maxw{X ⊆ V :
G[X] ∈ F}. The following lemmas state how to recursively compute all sets
of Definition 2.2.3 other than A00 and C00,k and D00,k for all k ∈ V \ {0}.

Lemma 2.2.1 ([24]). Let ij ∈ X \ {00}. Then Aij = Bgh for some gh ≤r ij.

Lemma 2.2.2 ([24]). Let i ∈ V \ {0}. Then Aii = maxw {A<ii, A<ii ∪ {i}}.

Lemma 2.2.3 ([24]). Let ij ∈ X \ I. Then Aij = maxw {A0ij , A6ij , Bij}.

Lemma 2.2.4 ([24]). Let ij ∈ X \ I. Then

Bij = max
w
{A�ij ∪ {i, j}, C�jj,i ∪ {j}, D�ii,j ∪ {i}} .

Lemma 2.2.5 ([24]). Let ij ∈ X \ {00} and k ∈ V \ Vij such that k <t j.

(1) If i = j, then Cii,k = maxw {C<ii,k, C<ii,k ∪ {i}}.

(2) If i 6= j, then Cij,k = maxw {C0ij,k, C6ij,k, Eij,k}.

Lemma 2.2.6 ([24]). Let ij ∈ X \ {00} and k ∈ V \ Vij such that k <b i.

(1) If i = j, then Dii,k = maxw {D<ii,k, D<ii,k ∪ {i}}.

(2) If i 6= j, then Dij,k = maxw {D0ij,k, D6ij,k, Fij,k}.

Lemma 2.2.7 ([24]). Let ij ∈ X \ I and k ∈ V \ Vij such that i <t k <t j.
Then

Eij,k = max
w
{C�kj,i ∪ {j, k}, D�ii,j ∪ {i, k}} .
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compute a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <lexr
and all predecessors of Definition 2.2.1 according to [26];

for ij in R
if i 6= j then compute Bij according to Lemma 2.2.4;
compute Aij according to Lemmas 2.2.2 and 2.2.3;
for k := 1 to n

if i 6= j
if i <b k and k <t j then compute Eij,k according to Lemma 2.2.7;
if k <b i and j <t k then compute Fij,k according to Lemma 2.2.8;

end if
if i <b k then compute Cij,k according to Lemma 2.2.5;
if j <t k then compute Dij,k according to Lemma 2.2.6;

end for
end for

return V \Aπ(n)n;

Figure 2.2: Liang’s [24] dynamic programming algorithm for solving FVS on
a permutation graph.

Lemma 2.2.8 ([24]). Let ij ∈ X \ I and k ∈ V \ Vij such that j <b k <b i.
Then

Fij,k = max
w
{C�jj,i ∪ {j, k}, D�ik,j ∪ {i, k}} .

Theorem 2.2.9 ([24]). The dynamic programming algorithm shown in Figure
2.2 returns a feedback vertex set of G that has minimum weight in O(nm) time.

2.3 Our New Algorithm on Interval Graphs

In this section we propose a novel O(n+m) dynamic programming algorithm
for solving FVS on interval graphs as a precursor to the dynamic programming
algorithm of Section 3.1 for solving SFVS on interval graphs.

We assume that we are given an interval graph G = (V,E) along with a
corresponding collection of closed intervals of R where all endpoints are distinct
and a weight function w : V → R as input. We extend w such that if it is
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called with a set of vertices, then it returns the sum of their respective weights.
Wherever maxw is called in this section, it returns an arbitrary choice that has
maximum weight among all its operands. We add an isolated dummy vertex
that has non-positive weight to G and we add a dummy interval that has
minimum right endpoint to the given collection as its corresponding interval.
We consider vertices of G to be equivalent to their corresponding intervals
and to the integers of {0, 1, . . . , n} that indicate their position when sorted in
ascending order of their corresponding intervals’ right endpoints.

For every vertex i of G, we use a(i) and b(i) to denote its corresponding
interval’s left and right endpoint respectively. We consider the two relations
on V that are defined by

i ≤l j ⇐⇒ a(i) ≤ a(j)
i ≤r j ⇐⇒ b(i) ≤ b(j)

for all i, j ∈ V . Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that ≤l and ≤r are total orders on V . Wherever minl is
called in this section, it returns the minimum among its operands with respect
to ≤l; and wherever maxr is called in this section, it returns the maximum
among its operands with respect to ≤r. We define some predecessors with
respect to ≤r and the V -sets, which correspond to the subproblems that our
dynamic programming algorithm wants to solve.

Definition 2.3.1 (Predecessors). Let i ∈ V \ {0}. Then

• < i = maxr{h ∈ V : h <r i} and

• � i = maxr{h ∈ V : h <r i and {h, i} /∈ E}.

Example 2.3.1. For the interval graph that has

C =

{
I1 = [2, 4], I2 = [1, 6], I3 = [7, 8], I4 = [5, 10],

I5 = [3, 11], I6 = [9, 13], I7 = [12, 14]

}
as a corresponding collection of closed intervals of R, < 6 = 5 and � 6 = 3.

Definition 2.3.2 (V -sets). Let i ∈ V . Then Vi = {h ∈ V : h ≤r i}.

Observation 2.3.1. Let i ∈ V \{0} and j ∈ V \Vi such that {i, j} ∈ E. Then

(1) Vi = V<i ∪ {i} and

(2) V<i = V�j ∪ {h ∈ V<i : {h, j} ∈ E}.
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Now, we define the sets that our dynamic programming algorithm computes
in order to conpute the forest-inducing vertex set of G that has maximum
weight.

Definition 2.3.3 (A-sets). Let i ∈ V . Then,

Ai = max
w
Ai = max

w
{X ⊆ Vi : G[X] ∈ F}.

Definition 2.3.4 (B-sets). Let i ∈ V and x ∈ V \ Vi. Then,

Bx
i = max

w
Bxi = max

w
{X ⊆ Vi : G[X ∪ {x}] ∈ F}.

Observe that, since V0 = {0} and w(0) ≤ 0, A0 = ∅ and, since Vn = V ,
An = maxw{X ⊆ V : G[X] ∈ F}. The following lemmas state how to
recursively compute all A-sets and B-sets other than A0.

Lemma 2.3.2 (A-sets). Let i ∈ V \ {0}. Then Ai = maxw
{
A<i, B

i
<i ∪ {i}

}
.

Proof. Let i ∈ V \ {0}.

Let i /∈ Ai. By this fact, Observation 2.3.1(1) and Definition 2.3.3, it follows
that

Ai ∈ A<i
A<i ∈ Ai

}
⇒ w(Ai) ≤ w(A<i)

w(A<i) ≤ w(Ai)

}
⇒

⇒ w(Ai) = w(A<i)⇒ Ai = A<i.

Let i ∈ Ai. By this fact, Observation 2.3.1(1) and Definitions 2.3.3 and
2.3.4, it follows that

Ai \ {i} ∈ Bi<i
Bi
<i ∪ {i} ∈ Ai

}
⇒ w(Ai \ {i}) ≤ w(Bi

<i)
w(Bi

<i ∪ {i}) ≤ w(Ai)

}
⇒

⇒ w(Ai) = w(Bi
<i ∪ {i})⇒ Ai = Bi

<i ∪ {i}.

Lemma 2.3.3 (B-sets). Let i ∈ V and x ∈ V \ Vi.

(1) If {i, x} /∈ E, then Bx
i = Ai.

(2) If {i, x} ∈ E, then Bx
i = maxw

{
Bx
<i, B

x′
�y′ ∪ {i}

}
where x′ = minl{i, x} and y′ = minl({i, x} \ {x′}).
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Proof. Let i ∈ V and x ∈ V \ Vi.

(1) Let {i, x} /∈ E. Then b(i) < a(x), so the neighbourhood of x in G[Vi ∪
{x}] is ∅. Consequently, no subset of Vi ∪ {x} that contains x induces a cycle
of G. By this fact and Definitions 2.3.3 and 2.3.4, it follows that

Bx
i ∈ Ai

Ai ∈ Bxi

}
⇒ w(Bx

i ) ≤ w(Ai)
w(Ai) ≤ w(Bx

i )

}
⇒

⇒ w(Bx
i ) = w(Ai)⇒ Bx

i = Ai.

(2) Let {i, x} ∈ E.

Let i /∈ Bx
i . By this fact, Observation 2.3.1(1) and Definition 2.3.4, it follows

that
Bx
i ∈ Bx<i

Bx
<i ∈ Bxi

}
⇒ w(Bx

i ) ≤ w(Bx
<i)

w(Bx
<i) ≤ w(Bx

i )

}
⇒

⇒ w(Bx
i ) = w(Bx

<i)⇒ Bx
i = Bx

<i.

Let i ∈ Bx
i . By this fact and Observation 2.3.1(1), it follows that (i) Bx

i \
{i} ⊆ V<i. We define x′ = minl{i, x} and y′ = minl({i, x} \ {x′}). Let
h ∈ Bx

i \ {i} such that {h, y′} ∈ E. Then

a(x′) < a(y′) < b(h) < b(x′), b(y′)⇒ {h, x′} ∈ E.

Consequently, 〈h, x′, y′〉 is an induced triangle ofG, a contradiction, so {h, y′} /∈
E for all h ∈ Bx

i \ {i}. By this fact, (i) and Observation 2.3.1(2), it follows
that (ii) Bx

i \{i} ⊆ V�y′ . The neighbourhood of y′ in G[V�y′∪{x′, y′}] is {x′}.
Consequently, no subset of V�y′ ∪ {x′, y′} that contains y′ induces a cycle of
G. By this fact, (ii) and Definition 2.3.4, it follows that

Bx
i \ {i} ∈ Bx

′
�y′

Bx′
�y′ ∪ {i} ∈ Bxi

}
⇒

w(Bx
i \ {i}) ≤ w(Bx′

�y′)

w(Bx′
�y′ ∪ {i}) ≤ w(Bx

i )

}
⇒

⇒ w(Bx
i ) = w(Bx′

�y′ ∪ {i})⇒ Bx
i = Bx′

�y′ ∪ {i}.

Theorem 2.3.4. The dynamic programming algorithm shown in Figure 2.3
computes a feedback vertex set of G that has minimum weight in O(n + m)
time.
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compute a list L containing all vertices of V
sorted in descending order with respect to <l and
a list R containing all vertices of V
sorted in ascending order with respect to <r;

A0 := ∅;
B1

0 := ∅;

for i in R starting from i := 1
compute < i and � i of Definition 2.3.1;
compute Ai according to Lemma 2.3.2;
for x in reverse L starting from x := i

if x = i then continue;
compute Bx

i according to Lemma 2.3.3;
if {i, x} /∈ E then break;

end for
end for

return V \An;

Figure 2.3: Our dynamic programming algorithm for solving FVS on an in-
terval graph.
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Proof. The correctness of the algorithm follows from Lemmas 2.3.2 and 2.3.3.
The computation of a single predecessor, A-set or B-set takes constant time.
The number of iterations performed is

O

∑
i∈V

1 +
∑

x∈N(i)

1

 = O(n+m).

Therefore, the total time complexity of the algorithm is O(n+m).

2.4 Our New Algorithm on Permutation Graphs

In this section we propose a novel O(nm) dynamic programming algorithm
for solving FVS on permutation graphs as a precursor to the dynamic pro-
gramming algorithm of Section 3.2 for solving SFVS on permutation graphs.

We assume that we are given a connected permutation graph G = (V,E)
along with a corresponding permutation π of G and a weight function w : V →
R as input. As any vertex that has non-positive weight would be automatically
included in a feedback vertex set that has minimum weight, we may also
assume that all vertices have positive weight. We extend w such that if it is
called with a set of vertices, then it returns the sum of their respective weights.
Wherever maxw is called in this section, it returns an arbitrary choice that
has maximum weight among all its operands. We add an isolated dummy
vertex that has non-positive weight to G and we add 0 7→ 0 to π as its first
column where 0 is its corresponding integer. We consider the vertices of G to
be equivalent to their corresponding integers in π’s domain.

We consider the two relations on V defined by

i ≤t j ⇐⇒ i ≤ j
i ≤b j ⇐⇒ π−1(i) ≤ π−1(j)

for all i, j ∈ V . It is not difficult to show that both ≤t and ≤b are total orders
on V ; they are exactly the orders in which the integers appear on the top and
bottom row of π respectively.

Our dynamic programming algorithm iterates on ordered crossing vertex
pairs. We define the following collections of ordered crossing vertex pairs:

X = {ij ∈ V 2 : i ≤t j and j ≤b i}

I = {ij ∈ V 2 : i = j} ⊂ X
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Observe that for every ij ∈ X , if i 6= j, then {i, j} ∈ E. We consider the two
relations on X defined by

gh ≤r ij ⇐⇒ g ≤b i and h ≤t j
gh ≤lexr ij ⇐⇒ g <b i or g = i and h ≤t j

for all gh, ij ∈ X as well as the two relations on X defined by

xy ≤l zw ⇐⇒ x ≤t z and y ≤b w
xy ≤lexl zw ⇐⇒ x <t z or x = z and y ≤b w

for all xy, zw ∈ X . It is not difficult to show that ≤l and ≤r are partial orders
on X , which we call the left-endpoints and right-endpoints product order
respectively, whereas ≤lexl and ≤lexr are total orders on X , which we call the
left-endpoints and right-endpoints lexicographic order respectively. We
also note that ≤lexl and ≤lexr are linear extentions of ≤l and ≤r respectively.
Wherever minl is called in this section, it returns the minimum among its
operands with respect to ≤l; and wherever maxr is called in this section, it
returns the maximum among its operands with respect to ≤r. We define
some predecessors with respect to ≤r and the V -sets, which correspond to the
subproblems that our dynamic programming algorithm wants to solve.

Definition 2.4.1 (Predecessors). Let ij ∈ X \ {00}. Then

• 0 ij = maxr{gh ∈ C : gh <r ij and h 6= j},

• 6 ij = maxr{gh ∈ C : gh <r ij and g 6= i},

• < ij = maxr{gh ∈ C : gh <r ij and g 6= i and h 6= j} and

• � ij = maxr{gh ∈ C : gh <r ij and {g, i}, {g, j}, {h, i}, {h, j} /∈ E}.

Example 2.4.1. For the permutation graph that has

π =

(
1 2 3 4 5 6 7 8
2 8 6 3 1 7 4 5

)
as a corresponding permutation of {1, 2, 3, 4, 5, 6, 7, 8}, 0 57 = 56, 6 57 = 47,
< 57 = 46, � 57 = 13 and 0 36,6 36, < 36,� 36 = 22.

Definition 2.4.2 (V -sets). Let ij ∈ X . Then Vij = {h ∈ V : hh ≤r ij}.

Observation 2.4.1. Let ij ∈ X . Then
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(1) Vij = V0ij ∪ {j},

(2) Vij = V6ij ∪ {i},

(3) Vij = V<ij ∪ {i, j},

(4) V<ij = V�jj ∪ {h ∈ V<ij : {h, j} ∈ E},

(5) V<ij = V�ii ∪ {h ∈ V<ij : {h, i} ∈ E},

(6) V�ii = V�ij ∪ {h ∈ V�ii : {h, j} ∈ E} and

(7) V�jj = V�ij ∪ {h ∈ V�jj : {h, i} ∈ E}.

Now, we define the sets that our dynamic programming algorithm computes
in order to compute the forest-inducing vertex set of G that has maximum
weight.

Definition 2.4.3 (A-sets). Let ij ∈ X . Then,

Aij = max
w
Aij = max

w
{X ⊆ Vij : G[X] ∈ F}.

Definition 2.4.4 (B-sets). Let ij ∈ X and x ∈ V \ Vij . Then,

Bxx
ij = max

w
Bxxij = max

w
{X ⊆ Vij : G[X ∪ {x}] ∈ F}.

Observe that, since V00 = {0} and w(0) ≤ 0, A00 = ∅ and, since Vπ(n)n = V ,
Aπ(n)n = maxw{X ⊆ V : G[X] ∈ F}. The following lemmas state how to
recursively compute all A-sets and B-sets other than A00.

Lemma 2.4.2. Let i ∈ V \ {0}. Then Aii = A<ii ∪ {i}.

Proof. Let i ∈ V \ {0}. Then the neighbourhood of i in G[Vii] is ∅. Conse-
quently, no subset of Vii that contains i induces a cycle of G, so i ∈ Aii. By
these facts, Observation 2.4.1(3) and Definition 2.4.3, it follows that

Aii \ {i} ∈ A<ii
A<ii ∪ {i} ∈ Aii

}
⇒ w(Aii \ {i}) ≤ w(A<ii)

w(A<ii ∪ {i}) ≤ w(Aii)

}
⇒

⇒ w(Aii) = w(A<ii ∪ {i})⇒ Aii = A<ii ∪ {i}.

Lemma 2.4.3. Let i ∈ V and x ∈ V \ Vii.

(1) If {i, x} /∈ E, then Bxx
ii = Aii.
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(2) If {i, x} ∈ E, then Bxx
ii = Bxx

<ii ∪ {i}.

Proof. Let i ∈ V and x ∈ V \ Vii.

(1) Let {i, x} /∈ E. Then i <t x and i <b x, so the neighbourhood of x in
G[Vii∪{x}] is ∅. Consequently, no subset of Vii∪{x} that contains x induces
a cycle of G. By this fact and Definitions 2.4.3 and 2.4.4, it follows that

Bxx
ii ∈ Aii

Aii ∈ Bxxii

}
⇒ w(Bxx

ii ) ≤ w(Aii)
w(Aii) ≤ w(Bxx

ii )

}
⇒

⇒ w(Bxx
ii ) = w(Aii)⇒ Bxx

ii = Aii.

(2) Let {i, x} ∈ E. Then the neighbourhood of i in G[Vii ∪ {x}] is {x}.
Consequently, no subset of Vii ∪ {x} that contains i induces a cycle of G, so
i ∈ Bxx

ii . By these facts, Observation 2.4.1(3) and Definition 2.4.4, it follows
that

Bxx
ii \ {i} ∈ Bxx<ii

Bxx
<ii ∪ {i} ∈ Bxxii

}
⇒ w(Bxx

ii \ {i}) ≤ w(Bxx
<ii)

w(Bxx
<ii ∪ {i}) ≤ w(Bxx

ii )

}
⇒

⇒ w(Bxx
ii ) = w(Bxx

<ii ∪ {i})⇒ Bxx
ii = Bxx

<ii ∪ {i}.

Lemma 2.4.4. Let ij ∈ X \ I. Then

Aij = max
w

{
A0ij , A6ij , A

ii
�jj ∪ {i, j}, A

jj
�ii ∪ {i, j}

}
.

Proof. Let ij ∈ X \ I.

Let j /∈ Aij . By this fact, Observation 2.4.1(1) and Definition 2.4.3, it
follows that

Aij ∈ A0ij

A0ij ∈ Aij

}
⇒ w(Aij) ≤ w(A0ij)

w(A0ij) ≤ w(Aij)

}
⇒

⇒ w(Aij) = w(A0ij)⇒ Aij = A0ij .

Let i /∈ Aij . Then one can as above show that Aij = A6ij .

Let i, j ∈ Aij . By this fact and Observation 2.4.1(3), it follows that (i)
Aij\{i, j} ⊆ V<ij . Let h ∈ Aij\{i, j} such that {h, i}, {h, j} ∈ E. Then 〈h, i, j〉
is an induced triangle of G, a contradiction, so either {h, i} /∈ E or {h, j} /∈ E
for all h ∈ Aij \ {i, j}. Let g, h ∈ Aij \ {i, j} such that {g, j}, {h, i} ∈ E. Then

g <t i <t h
h <b j <b g

}
⇒ {g, h} ∈ E.
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Consequently, 〈g, h, i, j〉 is an induced square of G, a contradiction, so either
{h, i} /∈ E for all h ∈ Aij \ {i, j} or {h, j} /∈ E for all h ∈ Aij \ {i, j}. By this
fact, (i) and Observations 2.4.1(4)–(5), it follows that either (ii) Aij \ {i, j} ⊆
V�jj or (iii) Aij \ {i, j} ⊆ V�ii. Assume that (ii) holds. The neighbourhood
of j in G[V�jj ∪ {i, j}] is {i}. Consequently, no subset of V�jj ∪ {i, j} that
contains j induces a cycle of G. By this fact, (ii) and Definitions 2.4.3 and
2.4.4, it follows that

Aij \ {i, j} ∈ Bii�jj
Bii
�jj ∪ {i, j} ∈ Aij

}
⇒ w(Aij \ {i, j}) ≤ w(Bii

�jj)

w(Bii
�jj ∪ {i, j}) ≤ w(Aij)

}
⇒

⇒ w(Aij) = w(Bii
�jj ∪ {i, j})⇒ Aij = Bii

�jj ∪ {i, j}.

Assuming that (iii) holds, one can as above show that Aij = Bjj
�ii∪{i, j}.

Lemma 2.4.5. Let ij ∈ X \ I and x ∈ V \ Vij.

(1) If {i, x}, {j, x} /∈ E, then Bxx
ij = Aij.

(2) If {i, x} ∈ E and {j, x} /∈ E, then

Bxx
ij = max

w

{
Bxx

0ij , B
xx
6ij , B

ii
�jj ∪ {i, j}, B

jj
�ix ∪ {i, j}

}
.

(3) If {i, x} /∈ E and {j, x} ∈ E, then

Bxx
ij = max

w

{
Bxx

0ij , B
xx
6ij , B

ii
�xj ∪ {i, j}, B

jj
�ii ∪ {i, j}

}
.

(4) If {i, x}, {j, x} ∈ E, then Bxx
ij = maxw

{
Bxx

0ij , B
xx
6ij

}
.

Proof. Let ij ∈ X \ I and x ∈ V \ Vij .

(1) Let {i, x}, {j, x} /∈ E. Then i <t j <t x and j <b i <b x, so the
neighbourhood of x in G[Vij ∪ {x}] is ∅. Consequently, no subset of Vij ∪ {x}
that contains x induces a cycle of G. By this fact and Definitions 2.4.3 and
2.4.4, it follows that

Bxx
ij ∈ Aij

Aij ∈ Bxxij

}
⇒ w(Bxx

ij ) ≤ w(Aij)

w(Aij) ≤ w(Bxx
ij )

}
⇒

⇒ w(Bxx
ij ) = w(Aij)⇒ Bxx

ij = Aij .
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(2)–(4) Let {i, x} ∈ E or {j, x} ∈ E.

Let j /∈ Bxx
ij . By this fact, Observation 2.4.1(1) and Definition 2.4.4, it

follows that
Bxx
ij ∈ Bxx0ij

Bxx
0ij ∈ Bxxij

}
⇒ w(Bxx

ij ) ≤ w(Bxx
0ij)

w(Bxx
0ij) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bxx

0ij)⇒ Bxx
ij = Bxx

0ij .

Let i /∈ Bxx
ij . Then one can as above show that Bxx

ij = Bxx
6ij .

Let i, j ∈ Bxx
ij . By this fact and Observation 2.4.1(3), it follows that (i)

Bxx
ij \ {i, j} ⊆ V<ij .

(2) Let {i, x} ∈ E and {j, x} /∈ E. Let h ∈ Bxx
ij \{i, j} such that {h, i}, {h, j} ∈

E. Then 〈h, i, j〉 is an induced triangle of G, a contradiction, so either
{h, i} /∈ E or {h, j} /∈ E for all h ∈ Bxx

ij \ {i, j}. Let g, h ∈ Bxx
ij \ {i, j}

such that {g, j}, {h, i} ∈ E. Then

g <t i <t h
h <b j <b g

}
⇒ {g, h} ∈ E.

Consequently, 〈g, h, i, j〉 is an induced square of G, a contradiction, so either
{h, i} /∈ E for all h ∈ Bxx

ij \ {i, j} or {h, j} /∈ E for all h ∈ Bxx
ij \ {i, j}. By this

fact, (i) and Observations 2.4.1(4)–(5), it follows that either (ii) Bxx
ij \ {i, j} ⊆

V�jj or (iii)Bxx
ij \{i, j} ⊆ V�ii. Assume that (ii) holds. The neighbourhoods of

j and x in G[V�jj∪{i, j, x}] are {i}. Consequently, no subset of V�jj∪{i, j, x}
that contains j and/or x induces a cycle of G. By this fact, (ii) and Definition
2.4.4, it follows that

Bxx
ij \ {i, j} ∈ Bii�jj

Bii
�jj ∪ {i, j} ∈ Bxxij

}
⇒ w(Bxx

ij \ {i, j}) ≤ w(Bii
�jj)

w(Bii
�jj ∪ {i, j}) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bii

�jj ∪ {i, j})⇒ Bxx
ij = Bii

�jj ∪ {i, j}

Now, assume that (iii) holds. Let h ∈ Bxx
ij \ {i, j} such that {h, x} ∈ E. Then

h <t i <t j <t x
j <b x <b h <b i

}
⇒ {h, j} ∈ E.

Consequently, 〈h, j, i, x〉 is an induced square of G, a contradiction, so {h, x} /∈
E for all h ∈ Bxx

ij \ {i, j}. By this fact, (iii) and Observation 2.4.1(6), it
follows that (iv) Bxx

ij \ {i, j} ⊆ V�ix. The neighbourhoods of i and x in
G[V�ix ∪ {i, j, x}] are {j}. Consequently, no subset of V�ix ∪ {i, j, x} that
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compute a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <lexr
and all predecessors of Definition 2.4.1 according to [26];

for ij in R
if ij = 00
A00 := ∅;

else
compute Aij according to Lemmas 2.4.2 and 2.4.4;

end if
for x := 1 to n

if x ∈ Vij then continue;
compute Bxx

ij according to Lemmas 2.4.3 and 2.4.5;

end for
end for

return V \Aπ(n)n;

Figure 2.4: Our dynamic programming algorithm for solving FVS on a per-
mutation graph.

contains i and/or x induces a cycle of G. By this fact, (iv) and Definition
2.4.4, it follows that

Bxx
ij \ {i, j} ∈ B

jj
�ix

Bjj
�ix ∪ {i, j} ∈ Bxxij

}
⇒ w(Bxx

ij \ {i, j}) ≤ w(Bjj
�ix)

w(Bjj
�ix ∪ {i, j}) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bjj

�ix ∪ {i, j})⇒ Bxx
ij = Bjj

�ix ∪ {i, j}

(3) Let {i, x} /∈ E and {j, x} ∈ E. Then one can as in (2) show that either
Bxx
ij = Bii

�xj ∪ {i, j} or Bxx
ij = Bjj

�ii ∪ {i, j}.

(4) Let {i, x}, {j, x} ∈ E. Then 〈i, j, x〉 is an induced triangle of G, a
contradiction.

Theorem 2.4.6. The dynamic programming algorithm shown in Figure 2.4
returns a feedback vertex set of G that has minimum weight in O(nm) time.

Proof. The correctness of the algorithm follows from Lemmas 2.4.2–2.4.5. The
computation of R and all predecessors of Definition 2.4.1 takes O(nm) time
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according to [26]. The computation of a single A-set or B-set takes constant
time. The number of iterations performed is

O

∑
ij∈X

(
1 +

∑
x∈V

1

) = O(nm).

Therefore, the total time complexity of the algorithm is O(nm).
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Chapter 3

Solving SFVS in Polynomial
Time

As we have already mentioned, there is no known polynomial result where
the input is restricted to a graph class regarding SFVS. In this chapter, we
propose our novel dynamic programming algorithms for solving SFVS on in-
terval graphs and permutation graphs in polynomial time. These algorithms
do not find an S-feedback vertex set of the input graph that has minimum
weight directly and return it; they find an S-forest-inducing vertex set of the
input graph that has maximum weight and return the set of all other vertices
instead. Throughout this chapter, we use FS to denote the collection of all
induced S-forests of the input graph.

3.1 Our Algorithm on Interval Graphs

In this section we propose a novel O(n + m + l) dynamic programming
algorithm for solving SFVS on interval graphs where l ∈ O(n3) is the number
of induced triangles of the input graph.

We assume that we are given an interval graph G = (V,E) along with
a corresponding collection of closed intervals of R where all endpoints are
distinct, a set S ⊆ V and a weight function w : V → R as input. We extend
w such that if it is called with a set of vertices, then it returns the sum of
their respective weights. Wherever maxw is called in this section, it returns
an arbitrary choice that has maximum weight among all its operands. We add

35
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an isolated dummy vertex that has non-positive weight to G and we add a
dummy interval that has minimum right endpoint to the given collection as
its corresponding interval. We consider vertices of G to be equivalent to their
corresponding intervals and to the integers of {0, 1, . . . , n} that indicate their
position when sorted in ascending order of their corresponding intervals’ right
endpoints.

For every vertex i of G, we use a(i) and b(i) to denote its corresponding
interval’s left and right endpoint respectively. We consider the two relations
on V that are defined by

i ≤l j ⇐⇒ a(i) ≤ a(j)
i ≤r j ⇐⇒ b(i) ≤ b(j)

for all i, j ∈ V . Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that ≤l and ≤r are total orders on V . Wherever minl is
called in this section, it returns the minimum among its operands with respect
to ≤l; and wherever maxr is called in this section, it returns the maximum
among its operands with respect to ≤r. We define some predecessors with
respect to ≤r and the V -sets, which correspond to the subproblems that our
dynamic programming algorithm wants to solve.

Definition 3.1.1 (Predecessors). Let i ∈ V \ {0}. Then

• < i = maxr{h ∈ V : h <r i} and

• � i = maxr{h ∈ V : h <r i and {h, i} /∈ E}.

Example 3.1.1. For the interval graph that has

C =

{
I1 = [2, 4], I2 = [1, 6], I3 = [7, 8], I4 = [5, 10],

I5 = [3, 11], I6 = [9, 13], I7 = [12, 14]

}
as a corresponding collection of closed intervals of R, < 6 = 5 and � 6 = 3.

Definition 3.1.2 (V -sets). Let i ∈ V . Then Vi = {h ∈ V : h ≤r i}.

Observation 3.1.1. Let i ∈ V \{0} and j ∈ V \Vi such that {i, j} ∈ E. Then

(1) Vi = V<i ∪ {i} and

(2) V<i = V�j ∪ {h ∈ V<i : {h, j} ∈ E}.
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Now, we define the sets that our dynamic programming algorithm computes
in order to conpute the S-forest-inducing vertex set of G that has maximum
weight.

Definition 3.1.3 (A-sets). Let i ∈ V . Then,

Ai = max
w
Ai = max

w
{X ⊆ Vi : G[X] ∈ FS}.

Definition 3.1.4 (B-sets). Let i ∈ V and x ∈ V \ Vi. Then,

Bx
i = max

w
Bxi = maxw{X ⊆ Vi : G[X ∪ {x}] ∈ FS}.

Definition 3.1.5 (C-sets). Let i ∈ V and x, y ∈ V \ (Vi ∪S) such that x <l y
and {x, y} ∈ E. Then,

Cx,yi = max
w
Cx,yi = max

w
{X ⊆ Vi : G[X ∪ {x, y}] ∈ FS}.

Observe that, since V0 = {0} and w(0) ≤ 0, A0 = ∅ and, since Vn = V ,
An = maxw{X ⊆ V : G[X] ∈ FS}. The following lemmas state how to
recursively compute all A-sets, B-sets and C-sets other than A0.

Lemma 3.1.2 (A-sets). Let i ∈ V \ {0}. Then Ai = maxw
{
A<i, B

i
<i ∪ {i}

}
.

Proof. Let i ∈ V \ {0}.

Let i /∈ Ai. By this fact, Observation 3.1.1(1) and Definition 3.1.3, it follows
that

Ai ∈ A<i
A<i ∈ Ai

}
⇒ w(Ai) ≤ w(A<i)

w(A<i) ≤ w(Ai)

}
⇒

⇒ w(Ai) = w(A<i)⇒ Ai = A<i.

Let i ∈ Ai. By this fact, Observation 3.1.1(1) and Definitions 3.1.3 and
3.1.4, it follows that

Ai \ {i} ∈ Bi<i
Bi
<i ∪ {i} ∈ Ai

}
⇒ w(Ai \ {i}) ≤ w(Bi

<i)
w(Bi

<i ∪ {i}) ≤ w(Ai)

}
⇒

⇒ w(Ai) = w(Bi
<i ∪ {i})⇒ Ai = Bi

<i ∪ {i}.

Lemma 3.1.3 (B-sets). Let i ∈ V and x ∈ V \ Vi.

(1) If {i, x} /∈ E, then Bx
i = Ai.
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(2) If {i, x} ∈ E, then

Bx
i =

 maxw

{
Bx
<i, B

x′
�y′ ∪ {i}

}
, if i ∈ S or x ∈ S

maxw

{
Bx
<i, C

x′,y′

<i ∪ {i}
}
, if i, x /∈ S

where x′ = mina{i, x} and y′ = mina({i, x} \ {x′}).

Proof. Let i ∈ V and x ∈ V \ Vi.

(1) Let {i, x} /∈ E. Then b(i) < a(x), so the neighbourhood of x in G[Vi ∪
{x}] is ∅. Consequently, no subset of Vi ∪ {x} that contains x induces an
S-cycle of G. By this fact and Definitions 3.1.3 and 3.1.4, it follows that

Bx
i ∈ Ai

Ai ∈ Bxi

}
⇒ w(Bx

i ) ≤ w(Ai)
w(Ai) ≤ w(Bx

i )

}
⇒

⇒ w(Bx
i ) = w(Ai)⇒ Bx

i = Ai.

(2) Let {i, x} ∈ E.

Let i /∈ Bx
i . By this fact, Observation 3.1.1(1) and Definition 3.1.4, it follows

that
Bx
i ∈ Bx<i

Bx
<i ∈ Bxi

}
⇒ w(Bx

i ) ≤ w(Bx
<i)

w(Bx
<i) ≤ w(Bx

i )

}
⇒

⇒ w(Bx
i ) = w(Bx

<i)⇒ Bx
i = Bx

<i.

Let i ∈ Bx
i . By this fact and Observation 3.1.1(1), it follows that (i) Bx

i \
{i} ⊆ V<i. We define x′ = minl{i, x} and y′ = minl({i, x} \ {x′}).

Case 1: Let i ∈ S or x ∈ S. Let h ∈ Bx
i \ {i} such that {h, y′} ∈ E. Then

a(x′) < a(y′) < b(h) < b(x′), b(y′)⇒ {h, x′} ∈ E.

Consequently, 〈h, x′, y′〉 is an induced S-triangle of G, a contradiction, so
{h, y′} /∈ E for all h ∈ Bx

i \ {i}. By this fact, (i) and Observation 3.1.1(2), it
follows that (ii) Bx

i \{i} ⊆ V�y′ . The neighbourhood of y′ in G[V�y′ ∪{x′, y′}]
is {x′}. Consequently, no subset of V�y′ ∪ {x′, y′} that contains y′ induces an
S-cycle of G. By this fact, (ii) and Definition 3.1.4, it follows that

Bx
i \ {i} ∈ Bx

′
�y′

Bx′
�y′ ∪ {i} ∈ Bxi

}
⇒

w(Bx
i \ {i}) ≤ w(Bx′

�y′)

w(Bx′
�y′ ∪ {i}) ≤ w(Bx

i )

}
⇒
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⇒ w(Bx
i ) = w(Bx′

�y′ ∪ {i})⇒ Bx
i = Bx′

�y′ ∪ {i}.

Case 2: Let i, x /∈ S. By (i) and Definitions 3.1.4 and 3.1.5, it follows that

Bx
i \ {i} ∈ C

x′,y′

<i

Cx
′,y′

<i ∪ {i} ∈ Bxi

}
⇒ w(Bx

i \ {i}) ≤ w(Cx
′,y′

<i )

w(Cx
′,y′

<i ∪ {i}) ≤ w(Bx
i )

}
⇒

⇒ w(Bx
i ) = w(Cx

′,y′

<i ∪ {i})⇒ Bx
i = Cx

′,y′

<i ∪ {i}.

Lemma 3.1.4 (C-sets). Let i ∈ V and x, y ∈ V \ (Vi ∪ S) such that x <a y
and {x, y} ∈ E.

(1) If {i, y} /∈ E, then Cx,yi = Bx
i .

(2) If {i, y} ∈ E, then Cx,yi =

{
Cx,y<i , if i ∈ S
maxw

{
Cx,y<i , C

x′,y′

<i ∪ {i}
}
, if i /∈ S

where x′ = minl{i, x, y} and y′ = minl({i, x, y} \ {x′}).

Proof. Let i ∈ V and x, y ∈ V \ (Vi ∪ S) such that x <a y and {x, y} ∈ E.

(1) Let {i, y} /∈ E. Then b(i), a(x) < a(y) < b(x), so the neighbourhood of
y in G[Vi ∪ {x, y}] is {x}. Consequently, no subset of Vi ∪ {x, y} that contains
y induces an S-cycle of G. By this fact and Definitions 3.1.4 and 3.1.5, it
follows that

Cx,yi ∈ Bxi
Bx
i ∈ C

x,y
i

}
⇒ w(Cx,yi ) ≤ w(Bx

i )
w(Bx

i ) ≤ w(Cx,yi )

}
⇒

⇒ w(Cx,yi ) = w(Bx
i )⇒ Cx,yi = Bx

i .

(2) Let {i, y} ∈ E. Then a(x) < a(y) < b(i) < b(x), b(y), so 〈i, x, y〉 is an
induced triangle of G.

Let i /∈ Cx,yi . By this fact, Observation 3.1.1(1) and Definition 3.1.5, it
follows that

Cx,yi ∈ Cx,y<i
Cx,y<i ∈ C

x,y
i

}
⇒ w(Cx,yi ) ≤ w(Cx,y<i )

w(Cx,y<i ) ≤ w(Cx,yi )

}
⇒

⇒ w(Cx,yi ) = w(Cx,y<i )⇒ Cx,yi = Cx,y<i .

Let i ∈ Cx,yi . By this fact and Observation 3.1.1(1), it follows that (i)
Cx,yi \ {i} ⊆ V<i. We define x′ = minl{i, x, y}, y′ = minl({i, x, y} \ {x′}) and
z′ = minl({i, x, y} \ {x′, y′}).
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Case 1: Let i ∈ S. Then 〈i, x, y〉 is an induced S-triangle ofG, a contradiction.

Case 2: Let i /∈ S. We will show that if a subset of V<i ∪ {x′, y′, z′} that
contains z′ induces an S-cycle of G, then its non-empty intersection with V<i
is not a subset of Cx

′,y′

i .

• Let v1, v2 ∈ V<i ∪ {x′, y′} such that 〈v1, v2, z′〉 is an induced S-triangle
of G. Since x′, y′, z′ /∈ S, without loss of generality, assume that v1 ∈ S
⇒ v1 ∈ V<i. Then

a(x′) < a(y′) < a(z′) < b(v1) < b(x′), b(y′), b(z′)⇒ {v1, x′}, {v1, y′} ∈ E.

Consequently, 〈v1, x′, y′〉 is an induced S-triangle of G, so v1 /∈ Cx
′,y′

i .

Therefore, if a subset of V<i∪{x′, y′, z′} that contains z′ induces an S-cycle of

G, then its non-empty intersection with V<i is not a subset of Cx
′,y′

i . By this
fact, (i) and Definition 3.1.5, it follows that

Cx,yi \ {i} ∈ Cx
′,y′

<i

Cx
′,y′

<i ∪ {i} ∈ C
x,y
i

}
⇒ w(Cx,yi \ {i}) ≤ w(Cx

′,y′

<i )

w(Cx
′,y′

<i ∪ {i}) ≤ w(Cx,yi )

}
⇒

⇒ w(Cx,yi ) = w(Cx
′,y′

<i ∪ {i})⇒ Cx,yi = Cx
′,y′

<i ∪ {i}.

Theorem 3.1.5. The dynamic programming algorithm shown in Figure 3.1
computes an S-feedback vertex set of G that has minimum weight in O(n+m+ l)
time where l ∈ O(n3) is the number of induced triangles of G.

Proof. The correctness of the algorithm follows from Lemmas 3.1.2–3.1.4. The
computation of a single predecessor, A-set, B-set or C-set takes constant time.
The number of iterations performed is

O

∑
i∈V

1 +
∑

x∈N(i)

1 +
∑

y∈N(i)∩N(x)

1

 = O(n+m+ l).

Therefore, the total time complexity of the algorithm is O(n+m+ l).
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compute a list L containing all vertices of V
sorted in descending order with respect to <l and
a list R containing all vertices of V
sorted in ascending order with respect to <r;

A0 := ∅;
B1

0 := ∅;

if {1, 2} ∈ E then C1,2
0 := ∅;

for i in R starting from i := 1
compute < i and � i of Definition 3.1.1;
compute Ai according to Lemma 3.1.2;
for x in reverse L starting from x := i

if x = i then continue;
compute Bx

i according to Lemma 3.1.3;
for y in reverse L starting from y := x

if y = x then continue;
if {x, y} ∈ E then compute Cx,yi according to Lemma 3.1.4;
if {i, y} /∈ E then break;

end for
if {i, x} /∈ E then break;

end for
end for

return V \An;

Figure 3.1: Our dynamic programming algorithm for solving SFVS on an
interval graph.
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3.2 Our Algorithm on Permutation Graphs

In this section we propose a novel O(m3) dynamic programming algorithm
for solving SFVS on permutation graphs.

We assume that we are given a connected permutation graph G = (V,E)
along with a corresponding permutation π of G, a set S ⊆ V and a weight
function w : V → R as input. As any vertex that has non-positive weight
would be automatically included in an S-feedback vertex set that has minimum
weight, we may also assume that all vertices have positive weight. We extend
w such that if it is called with a set of vertices, then it returns the sum of
their respective weights. Wherever maxw is called in this section, it returns an
arbitrary choice that has maximum weight among all its operands. We add an
isolated dummy vertex that has non-positive weight to G and we add 0 7→ 0
to π as its first column where 0 is its corresponding integer. We consider the
vertices of G to be equivalent to their corresponding integers in π’s domain.

We consider the two relations on V defined by

i ≤t j ⇐⇒ i ≤ j
i ≤b j ⇐⇒ π−1(i) ≤ π−1(j)

for all i, j ∈ V . It is not difficult to show that both ≤t and ≤b are total orders
on V ; they are exactly the orders in which the integers appear on the top and
bottom row of π respectively.

Our dynamic programming algorithm iterates on ordered crossing vertex
pairs. We define the following collections of ordered crossing vertex pairs:

X = {ij ∈ V 2 : i ≤t j and j ≤b i}

I = {ij ∈ V 2 : i = j} ⊂ X

Observe that for every ij ∈ X , if i 6= j, then {i, j} ∈ E. We consider the two
relations on X defined by

gh ≤r ij ⇐⇒ g ≤b i and h ≤t j
gh ≤lexr ij ⇐⇒ g <b i or g = i and h ≤t j

for all gh, ij ∈ X as well as the two relations on X defined by

xy ≤l zw ⇐⇒ x ≤t z and y ≤b w
xy ≤lexl zw ⇐⇒ x <t z or x = z and y ≤b w
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for all xy, zw ∈ X . It is not difficult to show that ≤l and ≤r are partial orders
on X , which we call the left-endpoints and right-endpoints product order
respectively, whereas ≤lexl and ≤lexr are total orders on X , which we call the
left-endpoints and right-endpoints lexicographic order respectively. We
also note that ≤lexl and ≤lexr are linear extentions of ≤l and ≤r respectively.
Wherever minl is called in this section, it returns the minimum among its
operands with respect to ≤l; and wherever maxr is called in this section, it
returns the maximum among its operands with respect to ≤r. We define
some predecessors with respect to ≤r and the V -sets, which correspond to the
subproblems that our dynamic programming algorithm wants to solve.

Definition 3.2.1 (Predecessors). Let ij ∈ X \ {00}. Then

• 0 ij = maxr{gh ∈ C : gh <r ij and h 6= j},

• 6 ij = maxr{gh ∈ C : gh <r ij and g 6= i},

• < ij = maxr{gh ∈ C : gh <r ij and g 6= i and h 6= j},

• � ij = maxr{gh ∈ C : gh <r ij and {g, i}, {g, j}, {h, i}, {h, j} /∈ E} and

• < ij � xx = maxr{gh ∈ C : gh <r ij and {h, x}, {g, x} /∈ E}.

Example 3.2.1. For the permutation graph that has

π =

(
1 2 3 4 5 6 7 8
2 8 6 3 1 7 4 5

)
as a corresponding permutation of {1, 2, 3, 4, 5, 6, 7, 8}, 0 57 = 56, 6 57 = 47,
< 57 = 46, � 57 = 13 and 0 36,6 36, < 36,� 36, < 36 � 88, < 57 � 88 =
22.

Definition 3.2.2 (V -sets). Let ij ∈ X . Then Vij = {h ∈ V : hh ≤r ij}.

Observation 3.2.1. Let ij ∈ X and x ∈ V \ Vij. Then

(1) Vij = V0ij ∪ {j},

(2) Vij = V6ij ∪ {i},

(3) Vij = V<ij ∪ {i, j},

(4) V<ij = V�jj ∪ {h ∈ V<ij : {h, j} ∈ E},

(5) V<ij = V�ii ∪ {h ∈ V<ij : {h, i} ∈ E},
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(6) V�ii = V�ij ∪ {h ∈ V�ii : {h, j} ∈ E},

(7) V�jj = V�ij ∪ {h ∈ V�jj : {h, i} ∈ E} and

(8) V<ij = V<ij�xx ∪ {h ∈ V<ij : {h, x} ∈ E}.

Now, we define the sets that our dynamic programming algorithm computes
in order to compute the S-forest-inducing vertex set of G that has maximum
weight.

Definition 3.2.3 (A-sets). Let ij ∈ X . Then,

Aij = max
w
Aij = max

w
{X ⊆ Vij : G[X] ∈ FS}.

Definition 3.2.4 (B-sets). Let ij ∈ X and x ∈ V \ Vij . Then,

Bxx
ij = max

w
Bxxij = max

w
{X ⊆ Vij : G[X ∪ {x}] ∈ FS}.

Definition 3.2.5 (B-sets). Let ij ∈ X and xy ∈ X \ I such that j <t y,
i <b x and x, y /∈ S. Then,

Bxy
ij = max

w
Bxyij = max

w
{X ⊆ Vij : G[X ∪ {x, y}] ∈ FS}.

Definition 3.2.6 (C-sets). Let ij ∈ X , xy ∈ X \ I and z ∈ V \ Vij such that
xy <l zz, x, y 6= z, {x, z} ∈ E ∨ {y, z} ∈ E, j <t y, i <b x and x, y, z /∈ S.
Then,

Cxy,zzij = max
w
Cxy,zzij = max

w
{X ⊆ Vij : G[X ∪ {x, y, z}] ∈ FS}.

Definition 3.2.7 (C-sets). Let ij ∈ X and xy, zw ∈ X \I such that xy <l zw,
x, y 6= z, w, {x,w}, {y, z} ∈ E, j <t y, w, i <b x, z and x, y, z, w /∈ S. Then,

Cxy,zwij = max
w
Cxy,zwij = max

w
{X ⊆ Vij : G[X ∪ {x, y, z, w}] ∈ FS}.

Observe that, since V00 = {0} and w(0) ≤ 0, A00 = ∅ and, since Vπ(n)n = V ,
Aπ(n)n = maxw{X ⊆ V : G[X] ∈ FS}. The following lemmas state how to
recursively compute all A-sets, B-sets, and C-sets other than A00.

Lemma 3.2.2. Let i ∈ V \ {0}. Then Aii = A<ii ∪ {i}.
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Proof. Let i ∈ V \ {0}. Then the neighbourhood of i in G[Vii] is ∅. Conse-
quently, no subset of Vii that contains i induces an S-cycle of G, so i ∈ Aii.
By these facts, Observation 3.2.1(3) and Definition 3.2.3, it follows that

Aii \ {i} ∈ A<ii
A<ii ∪ {i} ∈ Aii

}
⇒ w(Aii \ {i}) ≤ w(A<ii)

w(A<ii ∪ {i}) ≤ w(Aii)

}
⇒

⇒ w(Aii) = w(A<ii ∪ {i})⇒ Aii = A<ii ∪ {i}.

Lemma 3.2.3. Let i ∈ V and x ∈ V \ Vii.

(1) If {i, x} /∈ E, then Bxx
ii = Aii.

(2) If {i, x} ∈ E, then Bxx
ii = Bxx

<ii ∪ {i}.

Proof. Let i ∈ V and x ∈ V \ {Vii}.

(1) Let {i, x} /∈ E. Then i <t x and i <b x, so the neighbourhood of x in
G[Vii∪{x}] is ∅. Consequently, no subset of Vii∪{x} that contains x induces
an S-cycle of G. By this fact and Definitions 3.2.3 and 3.2.4, it follows that

Bxx
ii ∈ Aii

Aii ∈ Bxxii

}
⇒ w(Bxx

ii ) ≤ w(Aii)
w(Aii) ≤ w(Bxx

ii )

}
⇒

⇒ w(Bxx
ii ) = w(Aii)⇒ Bxx

ii = Aii.

(2) Let {i, x} ∈ E. Then the neighbourhood of i in G[Vii ∪ {x}] is {x}.
Consequently, no subset of Vii ∪ {x} that contains i induces an S-cycle of G,
so i ∈ Bxx

ii . By these facts, Observation 3.2.1(3) and Definition 3.2.4, it follows
that

Bxx
ii \ {i} ∈ Bxx<ii

Bxx
<ii ∪ {i} ∈ Bxxii

}
⇒ w(Bxx

ii \ {i}) ≤ w(Bxx
<ii)

w(Bxx
<ii ∪ {i}) ≤ w(Bxx

ii )

}
⇒

⇒ w(Bxx
ii ) = w(Bxx

<ii ∪ {i})⇒ Bxx
ii = Bxx

<ii ∪ {i}.

Lemma 3.2.4. Let i ∈ V and xy ∈ X \I such that i <t y, i <b x and x, y /∈ S.

(1) If {i, y} /∈ E, then Bxy
ii = Bxx

ii .

(2) If {i, x} /∈ E, then Bxy
ii = Byy

ii .

(3) If {i, x}, {i, y} ∈ E, then Bxy
ii =

{
Bxy
<ii , if i ∈ S

Bxy
<ii ∪ {i}, if i /∈ S.
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Proof. Let i ∈ V and xy ∈ X \ I such that i <t y, i <b x and x, y /∈ S.

(1) Let {i, y} /∈ E. Then i, x <t y and i <b y <b x, so the neighbourhood of
y in G[Vii∪{x, y}] is {x}. Consequently, no subset of Vii∪{x, y} that contains
y induces an S-cycle of G. By this fact and Definitions 3.2.4 and 3.2.5, it
follows that

Bxy
ii ∈ Bxxii

Bxx
ii ∈ B

xy
ii

}
⇒ w(Bxy

ii ) ≤ w(Bxx
ii )

w(Bxx
ii ) ≤ w(Bxy

ii )

}
⇒

⇒ w(Bxy
ii ) = w(Bxx

ii )⇒ Bxy
ii = Bxx

ii .

(2) Let {i, x} /∈ E. Then one can as in (1) show that Bxy
ii = Byy

ii .

(3) Let {i, x}, {i, y} ∈ E. Then x <t i <t y and y <b i <b x, so the
neighbourhood of i in G[X ∪ {x, y}] is {x, y}.

Case 1: Let i ∈ S. Then 〈i, x, y〉 is an induced S-triangle of G, so i /∈ Bxy
ii .

By this fact, Observation 3.2.1(3) and Definition 3.2.5, it follows that

Bxy
ii ∈ B

xy
<ii

Bxy
<ii ∈ B

xy
ii

}
⇒ w(Bxy

ii ) ≤ w(Bxy
<ii)

w(Bxy
<ii) ≤ w(Bxy

ii )

}
⇒

⇒ w(Bxy
ii ) = w(Bxy

<ii)⇒ Bxy
ii = Bxx

<ii.

Case 2: Let i /∈ S. We will show that no subset of Vii ∪ {x, y} that contains
i induces an S-cycle of G.

• Let v1, v2 ∈ V<ii ∪ {x, y} such that 〈v1, v2, i〉 is an induced S-triangle of
G. Then {v1, v2} = {x, y}, a contradiction, because i, x, y /∈ S.

• Let v1, v2, v3 ∈ V<ii∪{x, y} such that 〈v1, v2, v3, i〉 is an induced S-square
of G. Then {v1, v3} = {x, y}, a contradiction, because {x, y} ∈ E.

Therefore, no subset of Vii ∪{x, y} that contains i induces an S-cycle of G, so
i ∈ Bxy

ii . By these facts, Observation 3.2.1(3) and Definition 3.2.5, it follows
that

Bxy
ii \ {i} ∈ B

xy
<ii

Bxy
<ii ∪ {i} ∈ B

xy
ii

}
⇒ w(Bxy

ii \ {i}) ≤ w(Bxy
<ii)

w(Bxy
<ii ∪ {i}) ≤ w(Bxy

ii )

}
⇒

⇒ w(Bxy
ii ) = w(Bxy

<ii ∪ {i})⇒ Bxy
ii = Bxy

<ii ∪ {i}.

Lemma 3.2.5. Let i ∈ V , xy ∈ X \ I and z ∈ V \ Vij such that xy <l zz,
x, y 6= z, {x, z} ∈ E ∨ {y, z} ∈ E, i <t y, i <b x and x, y, z /∈ S.
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(1) If {i, z} /∈ E, then Cxy,zzii = Bxy
ii .

(2) If {i, z} ∈ E, then Cxy,zzii =

{
Cxy,zz<ii , if i ∈ S
Cxy,zz<ii ∪ {i}, if i /∈ S.

Proof. Let i ∈ V , xy ∈ X \ I and z ∈ V \ Vij such that xy <l zz, x, y 6= z,
{x, z} ∈ E ∨ {y, z} ∈ E, i <t y, i <b x and x, y, z /∈ S.

(1) Let {i, z} /∈ E. Then
i, x <t y, z

i, y <b z <b x

}
or

i, x <t z <t y
i, y <b x, z

}
, so the

neighbourhood of z in G[Vii∪{x, y, z}] is a subset of {x, y}. We will show that
no subset of Vii ∪ {x, y, z} that contains z induces an S-cycle of G.

• Let v1, v2 ∈ Vii ∪ {x, y} such that 〈v1, v2, z〉 is an induced S-triangle of
G. Then {v1, v2} = {x, y}, a contradiction, because x, y, z /∈ S.

• Let v1, v2, v3 ∈ Vii∪{x, y} such that 〈v1, v2, v3, z〉 is an induced S-square
of G. Then {v1, v3} = {x, y}, a contradiction, because {x, y} ∈ E.

Therefore, no subset of Vii ∪ {x, y, z} that contains z induces an S-cycle of G.
By this fact and Definitions 3.2.5 and 3.2.6, it follows that

Cxy,zzii ∈ Bxyii
Bxy
ii ∈ C

xy,zz
ii

}
⇒ w(Cxy,zzii ) ≤ w(Bxy

ii )
w(Bxy

ii ) ≤ w(Cxy,zzii )

}
⇒

⇒ w(Cxy,zzii ) = w(Bxy
ii )⇒ Cxy,zzii = Bxy

ii .

(2) Let {i, z} ∈ E. Then either
i, x <t y, z

y <b z <b i <b x

}
or

x <t z <t i <t y
i, y <b x, z

}
,

so (i) the neighbourhood of i in G[Vii ∪ {x, y, z}] is a superset of {y, z} or (ii)
it is a superset of {x, z}.

Case 1: Let i ∈ S. We will show that i /∈ Cxy,zzii . Let i ∈ Cxy,zzii . Assume
that (i) holds.

• If {y, z} ∈ E, then 〈i, y, z〉 is an induced S-triangle of S, a contradiction.

• If {y, z} /∈ E, then 〈i, y, x, z〉 is an induced S-square of S, a contradiction.

Likewise, assuming that (ii) holds. Therefore, i /∈ Cxy,zzii . By this fact, Obser-
vation 3.2.1 and Definition and 3.2.6, it follows that

Cxy,zzii ∈ Cxy,zz<ii

Cxy,zz<ii ∈ C
xy,zz
ii

}
⇒ w(Cxy,zzii ) ≤ w(Cxy,zz<ii )

w(Cxy,zz<ii ) ≤ w(Cxy,zzii )

}
⇒
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⇒ w(Cxy,zzii ) = w(Cxy,zz<ii )⇒ Cxy,zzii = Cxy,zz<ii .

Case 2: Let i /∈ S. We will show that if a subset of Vii∪{x, y, z} that contains
i induces an S-cycle of G, then its non-empty intersection with V<ii is not a
subset of Cxy,zzii .

• Let v1, v2 ∈ V<ii ∪ {x, y, z} such that 〈v1, v2, i〉 is an induced S-triangle
of G. Then {v1, v2} ⊂ {x, y, z}, a contradiction, because i, x, y, z /∈ S.

• Let v1, v2, v3 ∈ V<ii ∪ {x, y, z} such that 〈v1, v2, v3, i〉 is an induced S-
square of G. Then {v1, v3} ⊂ {x, y, z} and, since i, x, y, z /∈ S, v2 ∈ S ⇒
v2 ∈ V<ii.

– Assuming that {v1, v3} = {x, y} yields a contradiction, because
{x, y} ∈ E.

– Assume that {v1, v3} = {y, z}. If {y, z} ∈ E, this yields a contra-
diction. If {y, z} /∈ E, then 〈y, v2, z, x〉 is an induced S-square of
G, so v2 /∈ Cxy,zzii .

– Likewise, assuming that {v1, v3} = {x, z}.

Therefore, if a subset of Vii ∪ {x, y, z} that contains i induces an S-cycle of
G, then its non-empty intersection with V<ii is not a subset of Cxy,zzii , so
i ∈ Cxy,zzii . By these facts, Observation 3.2.1(3) and Definition 3.2.6, it follows
that

Cxy,zzii \ {i} ∈ Cxy,zz<ii

Cxy,zz<ii ∪ {i} ∈ C
xy,zz
ii

}
⇒ w(Cxy,zzii \ {i}) ≤ w(Cxy,zz<ii )

w(Cxy,zz<ii ∪ {i}) ≤ w(Cxy,zzii )

}
⇒

⇒ w(Cxy,zzii ) = w(Cxy,zz<ii ∪ {i})⇒ Cxy,zzii = Cxy,zz<ii ∪ {i}.

Lemma 3.2.6. Let i ∈ V and xy, zw ∈ X \I such that xy <l zw, x, y 6= z, w,
{x,w}, {y, z} ∈ E, i <t y, w, i <b x, z and x, y, z, w /∈ S.

(1) If {i, w} /∈ E, then Cxy,zwii = Cxy,zzii .

(2) If {i, z} /∈ E, then Cxy,zwii = Cxy,wwii .

(3) If {i, z}, {i, w} ∈ E, then Cxy,zwii =

{
Cxy,zw<ii , if i ∈ S
Cxy,zw<ii ∪ {i}, if i /∈ S.
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Proof. Let i ∈ V and xy, zw ∈ X \ I such that xy <l zw, x, y 6= z, w,
{x,w}, {y, z} ∈ E, i <t y, w, i <b x, z and x, y, z, w /∈ S.

(1) Let {i, w} /∈ E. Then i, x <t y, z, w, z <t w, w <b z and i, y <b x, z, w,
so the neighbourhood of w in G[Vii ∪ {x, y, z, w}] is a subset of {x, y, z}. We
will show that if a subset of Vii∪{x, y, z, w} that contains w induces an S-cycle
of G, then its non-empty intersection with Vii is not a subset of any X ∈ Cxy,zzii .

• Let v1, v2 ∈ Vii ∪ {x, y, z} such that 〈v1, v2, w〉 is an induced S-triangle
of G. Then {v1, v2} ⊂ {x, y, z}, a contradiction, because x, y, z, w /∈ S.

• Let v1, v2, v3 ∈ Vii ∪ {x, y, z} such that 〈v1, v2, v3, w〉 is an induced S-
square of G. Then {v1, v3} ⊂ {x, y, z} and, since x, y, z, w /∈ S, v2 ∈ S
⇒ v2 ∈ Vii.

– Assuming that {v1, v3} = {x, y} or {y, z} yields a contradiction,
because {x, y}, {y, z} ∈ E.

– Assume that {v1, v3} = {x, z}. If {x, z} ∈ E, this yields a contra-
diction. If {x, z} /∈ E, then 〈x, v2, z, y〉 is an induced S-square of
G, so v2 /∈ Cxy,zzii .

Therefore, if a subset of Vii ∪ {x, y, z, w} that contains w induces an S-cycle
of G, then its non-empty intersection with Vii is not a subset of Cxy,zzii . By
this fact and Definitions 3.2.6 and 3.2.7, it follows that

Cxy,zwii ∈ Cxy,zzii

Cxy,zzii ∈ Cxy,zwii

}
⇒ w(Cxy,zwii ) ≤ w(Cxy,zzii )

w(Cxy,zzii ) ≤ w(Cxy,zwii )

}
⇒

⇒ w(Cxy,zwii ) = w(Cxy,zzii )⇒ Cxy,zwii = Cxy,zzii .

(2) Let {i, z} /∈ E. Then one can as in (1) show that Cxy,zwii = Cxy,wwii .

(3) Let {i, z}, {i, w} ∈ E. Then x <t z <t i <t y, w and y <b w <b i <b x, z,
so the neighbourhood of i in G[Vii ∪ {x, y, z, w}] is {x, y, z, w}.

Case 1: Let i ∈ S. Then 〈i, x, y〉 is an S-triangle of G, so i /∈ Cxy,zwii . By this
fact, Observation 3.2.1 and Definition 3.2.7, it follows that

Cxy,zwii ∈ Cxy,zw<ii

Cxy,zw<ii ∈ Cxy,zwii

}
⇒ w(Cxy,zwii ) ≤ w(Cxy,zw<ii )

w(Cxy,zw<ii ) ≤ w(Cxy,zwii )

}
⇒

⇒ w(Cxy,zwii ) = w(Cxy,zw<ii )⇒ Cxy,zwii = Cxy,zw<ii .
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Case 2: Let i /∈ S. We will show that if a subset of Vii ∪ {x, y, z, w} that
contains i induces an S-cycle of G, then its non-empty intersection with V<ii
is not a subset of Cxy,zwii .

• Let v1, v2 ∈ V<ii∪{x, y, z, w} such that 〈v1, v2, i〉 is an induced S-triangle
of G. Then {v1, v2} ⊂ {x, y, z, w}, a contradiction, because i, x, y, z, w /∈
S.

• Let v1, v2, v3 ∈ V<ii ∪ {x, y, z, w} such that 〈v1, v2, v3, i〉 is an induced
S-square of G. Then {v1, v3} ⊂ {x, y, z, w} and, since i, x, y, z, w /∈ S,
v2 ∈ S ⇒ v2 ∈ V<ii.

– Assuming that {v1, v3} = {x, y}, {y, z}, {z, w} or {w, x} yields a
contradiction, because {x, y}, {y, z}, {z, w}, {w, x} ∈ E.

– Assume that {v1, v3} = {x, z}. If {x, z} ∈ E, this yields a contra-
diction. If {x, z} /∈ E, then 〈x, v2, z, y〉 is an induced S-square of
G, so v2 /∈ Cxy,zwii .

– Likewise, assuming that {v1, v3} = {y, w}.

Therefore, if a subset of Vii ∪ {x, y, z, w} that contains i induces an S-cycle
of G, then its non-empty intersection with V<ii is not a subset of Cxy,zwii , so
i ∈ Cxy,zwii . By these facts, Observation 3.2.1(3) and Definition 3.2.7, it follows
that

Cxy,zwii \ {i} ∈ Cxy,zw<ii

Cxy,zw<ii ∪ {i} ∈ Cxy,zwii

}
⇒ w(Cxy,zwii \ {i}) ≤ w(Cxy,zw<ii )

w(Cxy,zw<ii ∪ {i}) ≤ w(Cxy,zwii )

}
⇒

⇒ w(Cxy,zwii ) = w(Cxy,zw<ii ∪ {i})⇒ Cxy,zwii = Cxy,zw<ii ∪ {i}.

Lemma 3.2.7. Let ij ∈ X \ I. Then

Aij =



maxw

{
A0ij , A6ij , B

ii
�jj ∪ {i, j}, B

jj
�ii ∪ {i, j}

}
,

if i ∈ S or j ∈ S

maxw

{
A0ij , A6ij , B

ij
<ij ∪ {i, j}

}
,

if i, j /∈ S.

Proof. Let ij ∈ X \ I.
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Let j /∈ Aij . By this fact, Observation 3.2.1(1) and Definition 3.2.3, it
follows that

Aij ∈ A0ij

A0ij ∈ Aij

}
⇒ w(Aij) ≤ w(A0ij)

w(A0ij) ≤ w(Aij)

}
⇒

⇒ w(Aij) = w(A0ij)⇒ Aij = A0ij .

Let i /∈ Aij . Then one can as above show that Aij = A6ij .

Let i, j ∈ Aij . By this fact and Observation 3.2.1(3), it follows that (i)
Aij \ {i, j} ⊆ V<ij .

Case 1: Let i ∈ S or j ∈ S. Let h ∈ Aij \ {i, j} such that {h, i}, {h, j} ∈ E.
Then 〈h, i, j〉 is an induced S-triangle of G, a contradiction, so either {h, i} /∈
E or {h, j} /∈ E for all h ∈ Aij \ {i, j}. Let g, h ∈ Aij \ {i, j} such that
{g, j}, {h, i} ∈ E. Then

g <t i <t h
h <b j <b g

}
⇒ {g, h} ∈ E.

Consequently, 〈g, h, i, j〉 is an induced S-square of G, a contradiction, so either
{h, i} /∈ E for all h ∈ Aij \ {i, j} or {h, j} /∈ E for all h ∈ Aij \ {i, j}. By this
fact and Observations 3.2.1(4)–(5), it follows that either (ii) Aij \{i, j} ⊆ V�jj
or (iii) Aij \ {i, j} ⊆ V�ii. Assume that (ii) holds. The neighbourhood of j in
G[V�jj ∪ {i, j}] is {i}. Consequently, no subset of V�jj ∪ {i, j} that contains
j induces an S-cycle of G. By this fact, (ii) and Definitions 3.2.3 and 3.2.4, it
follows that

Aij \ {i, j} ∈ Bii�jj
Bii
�jj ∪ {i, j} ∈ Aij

}
⇒ w(Aij \ {i, j}) ≤ w(Bii

�jj)

w(Bii
�jj ∪ {i, j}) ≤ w(Aij)

}
⇒

⇒ w(Aij) = w(Bii
�jj ∪ {i, j})⇒ Aij = Bii

�jj ∪ {i, j}.

Assuming that (iii) holds, one can as above show that Aij = Bjj
�ii ∪ {i, j}.

Case 2: Let i, j /∈ S. By (i), Observation 3.2.1(3) and Definitions 3.2.3 and
3.2.5, it follows that

Aij \ {i, j} ∈ Bij<ij
Bij
<ij ∪ {i, j} ∈ Aij

}
⇒

w(Aij \ {i, j}) ≤ w(Bij
<ij)

w(Bij
<ij ∪ {i, j}) ≤ w(Aij)

}
⇒

⇒ w(Aij) = w(Bij
<ij ∪ {i, j})⇒ Aij = Bij

<ij ∪ {i, j}.

Lemma 3.2.8. Let ij ∈ X \ I and x ∈ V \ Vij.
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(1) If {i, x}, {j, x} /∈ E, then Bxx
ij = Aij.

(2) If {i, x} ∈ E and {j, x} /∈ E, then

Bxx
ij =



maxw

{
Bxx

0ij , B
xx
6ij , B

ii
�jj ∪ {i, j}, B

jj
�ix ∪ {i, j}

}
,

if i ∈ S or j ∈ S

maxw

{
Bxx

0ij , B
xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
,

if i, j /∈ S and x ∈ S

maxw

{
Bxx

0ij , B
xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
,

if i, j, x /∈ S

(3) If {i, x} /∈ E and {j, x} ∈ E, then

Bxx
ij =



maxw

{
Bxx

0ij , B
xx
6ij , B

ii
�xj ∪ {i, j}, B

jj
�ii ∪ {i, j}

}
,

if i ∈ S or j ∈ S

maxw

{
Bxx

0ij , B
xx
6ij , B

ij
<ij�xx ∪ {i, j}

}
,

if i, j /∈ S and x ∈ S

maxw

{
Bxx

0ij , B
xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
,

if i, j, x /∈ S

(4) If {i, x}, {j, x} ∈ E, then

Bxx
ij =



maxw

{
Bxx

0ij , B
xx
6ij

}
,

if i ∈ S or j ∈ S or x ∈ S

maxw

{
Bxx

0ij , B
xx
6ij , C

x′y′,z′z′

<ij ∪ {i, j}
}
,

if i, j, x /∈ S

In all cases

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x}} and

• z′z′ = minl{uu ∈ I : u ∈ {i, j, x} \ {x′, y′}}.
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Proof. Let ij ∈ X \ I and x ∈ V \ Vij .

(1) Let {i, x}, {j, x} /∈ E. Then i <t j <t x and j <b i <b x, so the
neighbourhood of x in G[Vij ∪ {x}] is ∅. Consequently, no subset of Vij ∪ {x}
that contains x induces an S-cycle of G. By this fact and Definitions 3.2.3
and 3.2.4, it follows that

Bxx
ij ∈ Aij

Aij ∈ Bxxij

}
⇒ w(Bxx

ij ) ≤ w(Aij)

w(Aij) ≤ w(Bxx
ij )

}
⇒

⇒ w(Bxx
ij ) = w(Aij)⇒ Bxx

ij = Aij .

(2)–(4) Let {i, x} ∈ E or {j, x} ∈ E.

Let j /∈ Bxx
ij . By this fact, Observation 3.2.1(1) and Definition 3.2.4, it

follows that
Bxx
ij ∈ Bxx0ij

Bxx
0ij ∈ Bxxij

}
⇒ w(Bxx

ij ) ≤ w(Bxx
0ij)

w(Bxx
0ij) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bxx

0ij)⇒ Bxx
ij = Bxx

0ij .

Let i /∈ Bxx
ij . Then one can as above show that Bxx

ij = Bxx
6ij .

Let i, j ∈ Bxx
ij . By this fact and Observation 3.2.1(3), it follows that (i)

Bxx
ij \ {i, j} ⊆ V<ij . We define the following ordered crossing vertex pairs:

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x}} and

• z′z′ = minl{uu ∈ I : u ∈ {i, j, x} \ {x′, y′}}.

(2) Let {i, x} ∈ E and {j, x} /∈ E.

Case 1: Let i ∈ S or j ∈ S. Let h ∈ Bxx
ij \ {i, j} such that {h, i}, {h, j} ∈ E.

Then 〈h, i, j〉 is an induced S-triangle ofG, a contradiction, so either {h, i} /∈ E
or {h, j} /∈ E for all h ∈ Bxx

ij \ {i, j}. Let g, h ∈ Bxx
ij \ {i, j} such that

{g, j}, {h, i} ∈ E. Then

g <t i <t h
h <b j <b g

}
⇒ {g, h} ∈ E.

Consequently, 〈g, h, i, j〉 is an induced S-square of G, a contradiction, so either
{h, i} /∈ E for all h ∈ Bxx

ij \ {i, j} or {h, j} /∈ E for all h ∈ Bxx
ij \ {i, j}. By this

fact, (i) and Observations 3.2.1(4)–(5), it follows that either (ii) Bxx
ij \ {i, j} ⊆

V�jj or (iii)Bxx
ij \{i, j} ⊆ V�ii. Assume that (ii) holds. The neighbourhoods of
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j and x in G[V�jj∪{i, j, x}] are {i}. Consequently, no subset of V�jj∪{i, j, x}
that contains j and/or x induces an S-cycle of G. By this fact, (ii) and
Definition 3.2.4, it follows that

Bxx
ij \ {i, j} ∈ Bii�jj

Bii
�jj ∪ {i, j} ∈ Bxxij

}
⇒ w(Bxx

ij \ {i, j}) ≤ w(Bii
�jj)

w(Bii
�jj ∪ {i, j}) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bii

�jj ∪ {i, j})⇒ Bxx
ij = Bii

�jj ∪ {i, j}

Now, assume that (iii) holds. Let h ∈ Bxx
ij \ {i, j} such that {h, x} ∈ E. Then

h <t i <t j <t x
j <b x <b h <b i

}
⇒ {h, j} ∈ E.

Consequently, 〈h, j, i, x〉 is an induced S-square of G, a contradiction, so
{h, x} /∈ E for all h ∈ Bxx

ij \ {i, j}. By this fact, (iii) and Observation 3.2.1(6),
it follows that (iv) Bxx

ij \ {i, j} ⊆ V�ix. The neighbourhoods of i and x in
G[V�ix ∪ {i, j, x}] are {j}. Consequently, no subset of V�ix ∪ {i, j, x} that
contains i and/or x induces an S-cycle of G. By this fact, (iv) and Definition
3.2.4, it follows that

Bxx
ij \ {i, j} ∈ B

jj
�ix

Bjj
�ix ∪ {i, j} ∈ Bxxij

}
⇒ w(Bxx

ij \ {i, j}) ≤ w(Bjj
�ix)

w(Bjj
�ix ∪ {i, j}) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bjj

�ix ∪ {i, j})⇒ Bxx
ij = Bjj

�ix ∪ {i, j}

Case 2: Let i, j /∈ S and x ∈ S. Let h ∈ Bxx
ij \ {i, j} such that {h, x} ∈ E.

Then
h, i <t j <t x

j <b x <b h <b i

}
⇒ {h, j} ∈ E.

Consequently, if {h, i} ∈ E, then 〈h, i, j〉 is an induced S-triangle of G, a
contradiction, and if {h, i} /∈ E, then 〈h, j, i, x〉 is an induced S-square of G,
also a contradiction, so {h, x} /∈ E for all h ∈ Bxx

ij \ {i, j}. By this fact, (i)
and Observation 3.2.1(8), it follows that

Bxx
ij \ {i, j} ∈ B

ij
<ij�xx

Bij
<ij�xx ∪ {i, j} ∈ Bxxij

}
⇒

w(Bxx
ij \ {i, j}) ≤ w(Bij

<ij�xx)

w(Bij
<ij�xx ∪ {i, j}) ≤ w(Bxx

ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bij

<ij�xx ∪ {i, j})⇒ Bxx
ij = Bij

<ij�xx ∪ {i, j}
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Case 3: Let i, j, x /∈ S. By (i) and Definitions 3.2.4 and 3.2.6, it follows that

Bxx
ij \ {i, j} ∈ B

x′y′,z′z′

<ij

Bx′y′,z′z′

<ij ∪ {i, j} ∈ Bxxij

}
⇒

w(Bxx
ij \ {i, j}) ≤ w(Bx′y′,z′z′

<ij )

w(Bx′y′,z′z′

<ij ∪ {i, j}) ≤ w(Bxx
ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bx′y′,z′z′

<ij ∪ {i, j})⇒ Bxx
ij = Bx′y′,z′z′

<ij ∪ {i, j}.

(3) Let {i, x} /∈ E and {j, x} ∈ E. Then one can as above show the following:

• If i ∈ S or j ∈ S, then either Bxx
ij = Bii

�xj ∪{i, j} or Bxx
ij = Bjj

�ii∪{i, j}.

• If x ∈ S, then Bxx
ij = Bij

<ij�xx ∪ {i, j}.

• If i, j, x /∈ S, then Bxx
ij = Bx′y′,z′z′

<ij .

(4) Let {i, x}, {j, x} ∈ E.

Case 1: Let i ∈ S or j ∈ S or x ∈ S. Then 〈i, j, x〉 is an induced S-triangle
of G, a contradiction.

Case 2: Let i, j, x /∈ S. By (i) and Definitions 3.2.4 and 3.2.6, it follows that

Bxx
ij \ {i, j} ∈ B

x′y′,z′z′

<ij

Bx′y′,z′z′

<ij ∪ {i, j} ∈ Bxxij

}
⇒

w(Bxx
ij \ {i, j}) ≤ w(Bx′y′,z′z′

<ij )

w(Bx′y′,z′z′

<ij ∪ {i, j}) ≤ w(Bxx
ij )

}
⇒

⇒ w(Bxx
ij ) = w(Bx′y′,z′z′

<ij ∪ {i, j})⇒ Bxx
ij = Bx′y′,z′z′

<ij ∪ {i, j}.

Lemma 3.2.9. Let ij, xy ∈ X \ I such that j <t y, i <b x and x, y /∈ S.

(1) If {i, y}, {j, y} /∈ E, then Bxy
ij = Bxx

ij .

(2) If {i, x}, {j, x} /∈ E, then Bxy
ij = Byy

ij .

(3) If {i, y}, {j, x} ∈ E, then

Bxy
ij =



maxw

{
Bxy

0ij , B
xy
6ij

}
,

if i ∈ S or j ∈ S

maxw

{
Bxy

0ij , B
xy
6ij , C

x′y′,z′w′

<ij ∪ {i, j}
}
,

if i, j /∈ S

where
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• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y}} and

• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y} \ {x′, y′}}.

Proof. Let ij, xy ∈ X \ I such that j <t y, i <b x and x, y /∈ S.

(1) Let {i, y} /∈ E. Then i <t j, j, x <t y and j <b i <b y <b x, so
the neighbourhood of y in G[Vij ∪ {x, y}] is {x}. Consequently, no subset of
Vij∪{x, y} that contains y induces an S-cycle of G. By this fact and Definitions
3.2.4 and 3.2.5, it follows that

Bxy
ij ∈ Bxxij

Bxx
ij ∈ B

xy
ij

}
⇒

w(Bxy
ij ) ≤ w(Bxx

ij )

w(Bxx
ij ) ≤ w(Bxy

ij )

}
⇒

⇒ w(Bxy
ij ) = w(Bxx

ij )⇒ Bxy
ij = Bxx

ij .

(2) Let {j, x} /∈ E. Then one can as in (1) show that Bxy
ij = Byy

ij .

(3) Let {i, y}, {j, x} ∈ E.

Let j /∈ Bxy
ij . By this fact, Observation 3.2.1(1) and Definition 3.2.5, it

follows that
Bxy
ij ∈ B

xy
0ij

Bxy
0ij ∈ B

xy
ij

}
⇒

w(Bxy
ij ) ≤ w(Bxy

0ij)

w(Bxy
0ij) ≤ w(Bxy

ij )

}
⇒

⇒ w(Bxy
ij ) = w(Bxy

0ij)⇒ Bxy
ij = Bxy

0ij .

Let i /∈ Bxy
ij . Then one can as above show that Bxy

ij = Bxy
6ij .

Let i, j ∈ Bxy
ij . By this fact and Observation 3.2.1(3), it follows that (i)

Bxy
ij \ {i, j} ⊆ V<ij .

Case 1: Let i ∈ S or j ∈ S.

• If {i, x} ∈ E, then 〈i, x, y〉 is an induced S-triangle of G, a contradiction.

• If {j, y} ∈ E, then 〈j, x, y〉 is an induced S-triangle of G, a contradiction.

• If {i, x}, {j, y} /∈ E, then 〈i, j, x, y〉 is an induced S-square of G, a con-
tradiction.

Case 2: Let i, j /∈ S. We define the following ordered crossing vertex pairs:

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y}} and
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• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y} \ {x′, y′}}.

By (i) and Definitions 3.2.5 and 3.2.7, it follows that

Bxy
ij \ {i, j} ∈ C

x′y′,z′w′

<ij

Cx
′y′,z′w′

<ij ∪ {i, j} ∈ Bxyij

}
⇒

w(Bxy
ij \ {i, j}) ≤ w(Cx

′y′,z′w′

<ij )

w(Cx
′y′,z′w′

<ij ∪ {i, j}) ≤ w(Bxy
ij )

}
⇒

⇒ w(Bxy
ij ) = w(Cx

′y′,z′w′

<ij ∪ {i, j})⇒ Bxy
ij = Cx

′y′,z′w′

<ij ∪ {i, j}.

Lemma 3.2.10. Let ij, xy ∈ X \ I and z ∈ V \ Vij such that xy <l zz,
x, y 6= z, {x, z} ∈ E ∨ {y, z} ∈ E, j <t y, i <b x and x, y, z /∈ S.

(1) If {i, z}, {j, z} /∈ E, then Cxy,zzij = Bxy
ij .

(2) If {i, z} ∈ E or {j, z} ∈ E, then

Cxy,zzij =



maxw

{
Cxy,zz0ij , Cxy,zz6ij

}
,

if i ∈ S or j ∈ S

maxw

{
Cxy,zz0ij , Cxy,zz6ij , Cx

′y′,z′w′

<ij ∪ {i, j}
}
,

if i, j /∈ S

where

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z}} and

• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z} \ {x′, y′}}.

Proof. Let ij, xy ∈ X \ I and z ∈ V \ Vij such that xy <l zz, x, y 6= z,
{x, z} ∈ E ∨ {y, z} ∈ E, j <t y, i <b x and x, y, z /∈ S.

(1) Let {i, z}, {j, z} /∈ E. Then i <t j, j, x <t y, z, i, y <b x, z and j <b i,
so the neighbourhood of z in G[Vij ∪ {x, y, z}] is a subset of {x, y}. We will
show that no subset of Vij ∪ {x, y, z} that contains z induces an S-cycle of G.

• Let v1, v2 ∈ Vij ∪ {x, y} such that 〈v1, v2, z〉 is an induced S-triangle of
G. Then {v1, v2} = {x, y}, a contradiction, because x, y, z /∈ S.

• Let v1, v2, v3 ∈ Vij∪{x, y} such that 〈v1, v2, v3, z〉 is an induced S-square
of G. Then {v1, v3} = {x, y}, a contradiction, because {x, y} ∈ E.



58 CHAPTER 3. SOLVING SFVS IN POLYNOMIAL TIME

Therefore, no subset of Vij ∪{x, y, z} that contains z induces an S-cycle of G.
By this fact and Definitions 3.2.5 and 3.2.6, it follows that

Cxy,zzij ∈ Bxyij
Bxy
ij ∈ C

xy,zz
ij

}
⇒

w(Cxy,zzij ) ≤ w(Bxy
ij )

w(Bxy
ij ) ≤ w(Cxy,zzij )

}
⇒

⇒ w(Cxy,zzij ) = w(Bxy
ij )⇒ Cxy,zzij = Bxy

ij .

(2) Let {i, z} ∈ E or {j, z} ∈ E.

Let j /∈ Cxy,zzij . By this fact, Observation 3.2.1(1) and Definition 3.2.6, it
follows that

Cxy,zzij ∈ Cxy,zz0ij

Cxy,zz0ij ∈ Cxy,zzij

}
⇒

w(Cxy,zzij ) ≤ w(Cxy,zz0ij )

w(Cxy,zz0ij ) ≤ w(Cxy,zzij )

}
⇒

⇒ w(Cxy,zzij ) = w(Cxy,zz0ij )⇒ Cxy,zzij = Cxy,zz0ij .

Let i /∈ Cxy,zzij . Then one can as above show that Cxy,zzij = Cxy,zz6ij .

Let i, j ∈ Cxy,zzij . By this fact and Observation 3.2.1(3), it follows that (i)
Cxy,zzij \ {i, j} ⊆ V<ij .

Case 1: Let i ∈ S or j ∈ S.

• Let {i, z} ∈ E. Then either

x <t z <t< i <t j <t y
i, y <b x, z

}
⇒ {i, x}, {y, z} ∈ E

or
i <t j <t y, z

x <t z
y <b z <b< i <b x

⇒ {i, y}, {x, z} ∈ E.
Assume that the former inequalities hold.

– If {i, y} ∈ E, then 〈i, x, y〉 is an induced S-triangle of G, a contra-
diction.

– If {x, z} ∈ E, then 〈i, x, z〉 is an induced S-triangle of G, a contra-
diction.

– If {i, y}, {x, z} /∈ E, then 〈i, x, y, z〉 is an induced S-square of G, a
contradiction.

Likewise, assuming that the latter inequalities hold.
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Case 2: Let i, j /∈ S. We define the following ordered crossing vertex pairs:

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w}},

• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w} \ {x′, y′}} and

• a′a′ = minl{uu ∈ I : u ∈ {i, j, x, y, z} \ {x′, y′, z′, w′}}.

We will show that if a subset of V<ij∪{x′, y′, z′, w′, a′} that contains a′ induces
an S-cycle of G, then its non-empty intersection with V<ij is not a subset of

Cx
′y′,z′w′

<ij .

• Let v1, v2 ∈ V<ij ∪ {x′, y′, z′, w′} such that 〈v1, v2, a′〉 is an induced S-
triangle of G. Since x′, y′, z′, w′ /∈ S, without loss of generality, assume
that v1 ∈ S ⇒ v1 ∈ V<ij . Then either

x′ <t z
′ <t< a′ <t v1 <t y

′

v1, y
′ <b x

′, z′, a′

}
⇒ {v1, x′}, {v1, z′} ∈ E

or
v1, x

′ <t y
′, w′, a′

y′ <b w
′ <b< a′ <b v1 <b x

′

}
⇒ {v1, y′}, {v1, w′} ∈ E.

Assume that the former inequalities hold.

– If {x′, z′} ∈ E, then 〈v1, x′, z′〉 is an induced S-triangle of G.

– If {v1, y′} ∈ E, then 〈v1, x′, y′〉 is an induced S-triangle of G.

– If {x′, z′}, {v1, y′} /∈ E, then 〈v1, x′, y′, z′〉 is induced an S-square of
G.

Therefore, v1 /∈ Cx
′y′,z′w′

<ij . Likewise, assuming that the latter inequalities
hold.

• Let v1, v2, v3 ∈ V<ij ∪{x′, y′, z′, w′} such that 〈v1, v2, v3, a′〉 is an induced
S-square of G. Assuming that v1 ∈ S or v3 ∈ S, one can as above show

that the S-vertex is not an element of Cx
′y′,z′w′

<ij . Assume that v2 ∈ S.
Since x′, y′, z′, w′ /∈ S, v2 ∈ V<ij . Then either

v2, x
′ <t a

′ <t v1, v3
v1, v3 <b v2 <b x

′, a′

}
⇒ {v1, x′}, {v3, x′} ∈ E

or
v1, v3 <b v2 <b y

′, a′

v2, y
′ <t a

′ <t v1, v3

}
⇒ {v1, y′}, {v3, y′} ∈ E.

Assume that the former inequalities hold.



60 CHAPTER 3. SOLVING SFVS IN POLYNOMIAL TIME

– If {v2, x′} ∈ E, then 〈v1, v2, x′〉 is an induced S-triangle of G.

– If {v2, x′} /∈ E, then 〈v1, v2, v3, x′〉 is an induced S-square of G.

Therefore, {v1, v2, v3} ∩ V<ij is not a subset of Cx
′y′,z′w′

<ij . Likewise, as-
suming that the latter inequalities hold.

Therefore, if a subset of V<ij ∪ {x′, y′, z′, w′, a′} that contains a′ induces an
S-cycle of G, then its non-empty intersection with V<ij is not a subset of

Cx
′y′,z′w′

<ij . By this fact, (i) and Definitions 3.2.6 and 3.2.7, it follows that

Cxy,zzij \ {i, j} ∈ Cx
′y′,z′w′

<ij

Cx
′y′,z′w′

<ij ∪ {i, j} ∈ Cxy,zzij

}
⇒

w(Cxy,zzij \ {i, j}) ≤ w(Cx
′y′,z′w′

<ij )

w(Cx
′y′,z′w′

<ij ∪ {i, j}) ≤ w(Cxy,zzij )

}
⇒

⇒ w(Cxy,zzij ) = w(Cx
′y′,z′w′

<ij ∪ {i, j})⇒ Cxy,zzij = Cx
′y′,z′w′

<ij ∪ {i, j}.

Lemma 3.2.11. Let ij, xy, zw ∈ X \ I such that xy <l zw, x, y 6= z, w,
{x,w}, {y, z} ∈ E, j <t y, w, i <b x, z and x, y, z, w /∈ S.

(1) If {i, w} /∈ E, then Cxy,zwij = Cxy,zzij .

(2) If {j, z} /∈ E, then Cxy,zwij = Cxy,wwij .

(3) If {i, w}, {j, z} ∈ E, then

Cxy,zwij =



maxw

{
Cxy,zw0ij , Cxy,zw6ij

}
,

if i ∈ S or j ∈ S

maxw

{
Cxy,zw0ij , Axy,zw6ij , Ax

′y′,z′w′

<ij ∪ {i, j}
}
,

if i, j /∈ S

where

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w}} and

• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w} \ {x′, y′}}.

Proof. Let ij, xy, zw ∈ X \ I such that xy <l zw, x, y 6= z, w, {x,w}, {y, z} ∈
E, j <t y, w, i <b x, z and x, y, z, w /∈ S.

(1) Let {i, w} /∈ E. Then i <t j <t y, w, x <t y, z, z <t w, j <b i <b w <b z
and i, y <b x,w, so the neighbourhood of w in G[Vij ∪ {x, y, z, w}] is a subset
of {x, y, z}. We will show that if a subset of Vij ∪ {x, y, z, w} that contains
w induces an S-cycle of G, then its non-empty intersection with Vij is not a
subset of Cxy,zzij .
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• Let v1, v2 ∈ Vij ∪ {x, y, z} such that 〈v1, v2, w〉 is an induced S-triangle
of G. Then {v1, v2} ⊂ {x, y, z}, a contradiction, because x, y, z, w /∈ S.

• Let v1, v2, v3 ∈ Vij ∪ {x, y, z} such that 〈v1, v2, v3, w〉 is an induced S-
square of G. Then {v1, v3} ⊂ {x, y, z} and, since x, y, z, w /∈ S, v2 ∈ S
⇒ v2 ∈ Vii.

– Assuming that {v1, v3} = {x, y} or {y, z} yields a contradiction,
because {x, y}, {y, z} ∈ E.

– Assume that {v1, v3} = {x, z}. If {x, z} ∈ E, this yields a contra-
diction. If {x, z} /∈ E, then 〈x, v2, z, y〉 is an induced S-square of
G, so v2 /∈ Cxy,zzij .

Therefore, if a subset of Vij ∪ {x, y, z, w} that contains w induces an S-cycle
of G, then its non-empty intersection with Vij is not a subset of Cxy,zzij . By
this fact and Definitions 3.2.6 and 3.2.7, it follows that

Cxy,zwij ∈ Cxy,zzij

Cxy,zzij ∈ Cxy,zwij

}
⇒

w(Cxy,zwij ) ≤ w(Cxy,zzij )

w(Cxy,zzij ) ≤ w(Cxy,zwij )

}
⇒

⇒ w(Cxy,zwij ) = w(Cxy,zzij )⇒ Cxy,zwij = Cxy,zzij .

(2) Let {j, z} /∈ E. Then one can as in (1) show that Cxy,zwij = Cxy,wwij .

(3) Let {i, w}, {j, z} ∈ E.

Let j /∈ Cxy,zwij . By this fact, Observation 3.2.1(1) and Definition 3.2.7, it
follows that

Cxy,zwij ∈ Cxy,zw0ij

Cxy,zw0ij ∈ Cxy,zwij

}
⇒

w(Cxy,zwij ) ≤ w(Cxy,zw0ij )

w(Cxy,zw0ij ) ≤ w(Cxy,zwij )

}
⇒

⇒ w(Cxy,zwij ) = w(Cxy,zw0ij )⇒ Cxy,zwij = Cxy,zw0ij .

Let i /∈ Cxy,zwij . Then one can as above show that Cxy,zwij = Cxy,zw6ij .

Let i, j ∈ Cxy,zwij . By this fact and Observation 3.2.1(3), it follows that (i)
Cxy,zwij \ {i, j} ⊆ V<ij .

Case 1: Let i ∈ S or j ∈ S.

• If {i, z} ∈ E, then 〈i, j, z〉 is an induced S-triangle of G, a contradiction.

• If {j, w} ∈ E, then 〈i, j, w〉 is an induced S-triangle of G, a contradiction.
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• If {i, z}, {j, w} /∈ E, then 〈i, j, z, w〉 is an induced S-square of G, a
contradiction.

Case 2: Let i, j /∈ S. We define the following ordered crossing vertex pairs:

• x′y′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w}},

• z′w′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w} \ {x′, y′}} and

• a′b′ = minl{uv ∈ X \ I : u, v ∈ {i, j, x, y, z, w} \ {x′, y′, z′, w′}}.

We will show that if a subset of V<ij ∪ {x′, y′, z′, w′, a′, b′} that contains a′

and/or b′ induces an S-cycle of G, then its non-empty intersection with V<ij

is not a subset of Cx
′y′,z′w′

<ij .

• Let v1, v2 ∈ (X \ {i, j}) ∪ {x′, y′, z′, w′, a′} such that 〈v1, v2, b′〉 is an
induced S-triangle of G. Since x′, y′, z′, w′, a′, b′ /∈ S, without loss of
generality, assume that v1 ∈ S ⇒ v1 ∈ V<ij . Then

v1, x
′ <t y

′, w′, b′

y′ <b w
′ <b b

′ <b v1 <b x
′

}
⇒ {v1, y′}, {v1, w′} ∈ E.

– If {v1, x′} ∈ E, then 〈v1, x′, y′〉 is an induced S-triangle of G.

– If {y′, w′} ∈ E, then 〈v1, y′, w′〉 is an induced S-triangle of G.

– If {v1, x′}, {y′, w′} /∈ E, then 〈v1, y′, x′, w′〉 is an induced S-square
of G.

• Let v1, v2, v3 ∈ V<ij ∪ {x′, y′, z′, w′, a′} such that 〈v1, v2, v3, b′〉 is an S-
square of G. Assuming that v1 ∈ S or v3 ∈ S, one can as above show

that the S-vertex is not an element of Cx
′y′,z′w′

<ij . Assume that v2 ∈ S.
Since x′, y′, z′, w′, a′, b′ /∈ S, v2 ∈ V<ij . Then

v1, v3 <t v2 <b y
′, b′

v2, y
′ <b b

′ <b v1, v3

}
⇒ {v1, y′}, {v3, y′} ∈ E.

– If {v2, y′} ∈ E, then 〈v1, v2, y′〉 is an induced S-triangle of G. If
v1 = a′, then

x′ <t a
′ <t v2 <t y

′

y′ <b v2 <b x
′, a′

}
⇒ {v2, x′} ∈ E.

Consequently, 〈v2, x′, y′〉 is an induced S-triangle of G.
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– If {v2, y′} /∈ E, then 〈v1, v2, v3, y′〉 is an induced S-square of G. If,
without loss of generality, v1 = a′, then

x′ <t< z′ <t a
′ <t v2 <t y

′

v2 <b y <b x
′, z′, a′

}
⇒ {v2, x′}, {v2, z′} ∈ E.

Consequently, if {x′, z′} ∈ E, then 〈v2, x′, z′〉 is an induced S-
triangle of G and if {x′, z′} /∈ E, then 〈v2, x′, y′, z′〉 is an induced
S-square of G.

• One can as above show that if a subset of V<ij ∪{x′, y′, z′, w′, a′, b′} that
contains a′ induces an S-cycle of G, then its non-empty intersection with

V<ij is not a subset of Cx
′y′,z′w′

<ij .

Therefore, if a subset of V<ij ∪ {x′, y′, z′, w′, a′, b′} that contains a′ and/or b′

induces an S-cycle of G, then its non-empty intersection with V<ij is not a

subset of Cx
′y′,z′w′

<ij . By this fact, (i) and Definition 3.2.7, it follows that

Cxy,zwij \ {i, j} ∈ Cx
′y′,z′w′

<ij

Cx
′y′,z′w′

<ij ∪ {i, j} ∈ Cxy,zwij

}
⇒

w(Cxy,zwij \ {i, j}) ≤ w(Cx
′y′,z′w′

<ij )

w(Cx
′y′,z′w′

<ij ∪ {i, j}) ≤ w(Cxy,zwij )

}
⇒

⇒ w(Cxy,zwij ) = w(Cx
′y′,z′w′

<ij ∪ {i, j})⇒ Cxy,zwij = Cx
′y′,z′w′

<ij ∪ {i, j}.

Theorem 3.2.12. The dynamic programming algorithm shown in Figure 3.2
returns an S-feedback vertex set of G that has minimum weight in O(m3) time.

Proof. The correctness of the algorithm follows from Lemmas 3.2.2–3.2.11.
The computation of L, R and all predecessors of Definition 3.2.1 takes O(n2m)
time. The computation of a single A-set, B-set or C-set takes constant time.
The number of iterations performed is

O

∑
ij∈X

1 +
∑
xy∈X

(
1 +

∑
zw∈X

1

) = O(m3).

Therefore, the total time complexity of the algorithm is O(m3).
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compute a list L containing all ordered crossing vertex pairs of X
sorted in descending order with respect to <lexl ,
a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <lexr
and all predecessors of Definition 3.2.1;

for ij in R
compute Aij according to Lemmas 3.2.2 and 3.2.7;
for xy in reverse L

if x ∈ Vij or y ∈ Vij then continue;
compute Bxy

ij according to Lemmas 3.2.3, 3.2.4, 3.2.8 and 3.2.9;

if x 6= y
for zw in reverse L starting from zw := xy

if not all the conditions of the definition of Cxy,zwij are met then continue;

compute Cxy,zwij according to Lemmas 3.2.5, 3.2.6, 3.2.10 and 3.2.11;

end for
end if

end for
end for

return V \Aπ(n)n;

Figure 3.2: Our dynamic programming algorithm for solving SFVS on a per-
mutation graph.



Chapter 4

Concluding Remarks

4.1 The New State of FVS and SFVS

FVS is a well-known and well-studied problem of Algorithmic Graph The-
ory. It is NP-complete on general graphs, planar graphs, bipartite graphs and
planar bipartite graphs. The list of graph classes on which it is P includes in-
terval graphs, permutation graphs, trapezoid graphs, cocomparability graphs
and convex bipartite graphs, AT-free graphs, chordal graphs and graphs of
bounded cliquewidth. In Chapter 2, we proposed novel dynamic program-
ming algorithms for solving FVS on interval graphs and permutation graphs
that excibited the same time complexity as their respective best known coun-
terparts found in literature. Figure 4.1 is an updated version of Figure 1.4
that includes our aforementioned results.

In this thesis we studied SFVS, a generalization of FVS that is not as well-
studied as FVS. The fact that SFVS is a generalization of FVS implies that it
is NP-complete on general graphs, planar graphs, bipartite graphs and planar
bipartite graphs as well. The first significant difference in the behaviour of the
two problems is that, unlike FVS which is P on chordal graphs, SFVS was
shown to be NP-complete on split graphs, a subclass of chordal graphs. Also
unlike FVS, there is no polynomial result where the input is restricted to graph
classes regarding SFVS to be found in literature. In Chapter 3, we proposed
novel dynamic programming algorithms for solving SFVS on interval graphs
in O(n+m+ l) time where l ∈ O(n3) is the number of triangles in the input
graph and on permutation graphs in O(m3) time—the first polynomial results
regarding SFVS. Figure 4.2 is an updated version of Figure 1.5 that includes
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Figure 4.1: Best known results regarding FVS on the listed graph classes. Our
results are indicated by a star (?).

our aforementioned results.

4.2 Future Work and Open Problems

Trapezoid graphs are a superclass of permutation graphs whose intersec-
tion model naturally generalizes the intersection model of permutation graphs.
Thus, we believe that, by defining an appropriate notion of ordered crossing
vertex pairs, our novel dynamic programming approach can be adjusted to
operate on trapezoid graphs and we will be pursuing this in the immediate
future.

Graph classes lying on the hierarchy path from permutation graphs to AT-
free graphs are not the only ones on which FVS behaviour is known and SFVS
behaviour remains unknown, however. For example, even though SFVS was
shown to be NP-complete on split graphs, another well-studied subclass of
chordal graphs is the one of strongly chordal graphs. Is SFVS NP-complete
on strongly chordal graphs as well or can a polynomial algorithm solving it on
them be found?
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Figure 4.2: Best known results regarding SFVS on the listed graph classes.
Our results are indicated by a star (?).

Graphs of bounded cliquewidth are yet another graph class that is worth
investigating. FVS is P on graphs of bounded cliquewidth. Many classical
graph classes that we do not mention in this thesis are classes of graphs of
bounded cliquewidth. This implies that FVS is P on all those graph classes.
Is SFVS P on graphs of bounded cliquewidth as well? If not, is it perhaps P
on graphs of a bounded graph parameter stricter than cliquewidth?
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Appendix A

Miscellaneous Mathematical
Concepts

partition

A partition of a set S is a collection of pairwise disjoint subsets of S that
its union is S.

permutation

A permutation of a set S is a one-to-one correspondence of elements of S to
elements of S. A permutation is commonly presented as a 2×|S| matrix where
for each column the permutation maps the element of the first row to the ele-
ment of the second row. For example, the permutation π of {1, 2, 3, 4, 5, 6, 7, 8}
where π(1) = 2, π(2) = 8, π(3) = 6, π(4) = 3, π(5) = 1, π(6) = 7, π(7) = 4
and π(8) = 5 is

π =

(
1 2 3 4 5 6 7 8
2 8 6 3 1 7 4 5

)
.

relation, partial order, total order, linear extention

A (binary) relation on a set S is a set R ⊆ S2. We commonly denote an
inclusion in a relation as we would denote an action of a binary operation;
that is, for a relation R on S, we consider xRy to be equivalent to (x, y) ∈ R
for all x, y ∈ S.
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A relation R on a set S may satisfy any number of the properties listed
below:

• ∀ x ∈ S : xRx (reflexivity)

• ∀ x ∈ S : ¬xRx (irreflexivity)

• ∀ x, y, z ∈ S : (xRy ∧ yRz)→ xRz (transitivity)

• ∀ x, y ∈ S : (xRy ∧ yRx)→ x = y (antisymmetry)

• ∀ x, y ∈ S : xRy ∨ yRx (totality)

We say that two elements x, y of S for which xRy∨ yRx holds are comparable
(with respect to R).

A partial order on a set S is a relation on S that is reflexive, transitive and
antisymmetric. A total order on S is a partial order on S that is also total.

A linear extention of a partial order R on a set S is a total order L on S
such that

xRy =⇒ xLy

for all x, y ∈ S.
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[5] Brandstädt, A., and Kratsch, D. On domination problems for per-
mutation and other graphs. Theoretical Computer Science 54, 2 (1987),
181 – 198.
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