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[eptAngm

Aodévtog evic ypaphuatoc Ue Bdpn oTic x0puPEc Tou we gloodo, To (éufupo)
TEOPBANUa Tou AKTKAOT EIATOMENOT YTIOrPASHMATOE (FVS) {Intd v ebpeon
EVOC eAaylOTOL BAPOUC UTOGUVOAOU TV XORUPKY TOU YRAUPHUITOS ELGODOU TGV
omolwy 1 aalpeon amd auTH EYEL WG ATOTEAEOUA AUTO VL UMV EYEL TAEOV ETAYOUE-
vo xUxho. To FVS Poloxeton petold twv xhacoxdy teoBinudtwy tne Alyoptd-
e Ocwplag Foogpnudtwy xou €xet Bpel TOMES epopuoYéc o GARAL YVOOTIXE
TEDlOL UE TO TEQUCUA TWV YPOVWV, UE EQPUPUOYES GTNY LXAVOTOINGCT| TEPLOPIGUMY
xat oty Mrelolovy| cuunepaoatohoyio, TNy onTXr SIXTUWOT) XAl OTNV UTOAO-
yioTwer flohoyio va elvon yepinég mpdopatee tpocixes. 2¢ puoixd enaxdrovdo,
oL akyopLiuot eniluong tou FVS Atav ndvto avtixelyevo evepyric épeuvac. Tooo
axpBelc 600 xan mpoceyyloTixol alyopriuol €xouy mpotadel yia TV eTALGT TOU
FVS oe yevirnd ypaghuata. To FVS eivor N'P-thfipec ota yevxd ypoephipora,
o7 ETIMEDA YEAUPHUATA, GTOL OLUERY| YEUPHUTA XAl OTOL ETUTEDN OLIERY| YEOUPT|UO-
Ta. Luvenwg, o FVS dewpeitan antdovo va etvor mohvwvuuixd emhdouo oe auTég
TIC xAdoELC Yeapnudtwy. Avagépouue eniong twg to FVS eivan FPT oto yevixd
yeagpruata. To FVS elvor moAuwvupxd emhdoyo oo YRoUPHUATO OLoC THUATGY
oe O(n 4+ m) ypdvo, ota ypaphuoto YeTodécewy xar ota ypophato teaneliny
oe O(nm) ypbvo, ota cuvouyxpeioa YeopAUaTa Xot 6To XUPTE OUIERT| YR
o o O(n?m), ota AT-ehetepa ypagphuata oe O(ndm?) ypdvo, ota Yopdixd
yoopfpata oe O(n®) ypdvo xu ot ypuwuato @eoyuévou mhdtoug xhixac oe
O(n) ypbdvo, 6mou n xou m elvor 10 TAAYOC TWV XOPUPHDY XL TWY AXUDY TOU
YEAUPHUATOS EL0OB0L avTicTOLY AL

Yty mapovoa Swteyr), yehetolue pla yevixevon tou FVS mou xoleiton to
TeOBANUA Tou XTOXETMENA AKTKAOT EITATOMENOT Y TIOTPASHMATOE. AoVévTenv
EVOC YRAPNUATOS PE BT OTIC XOPUPES TOL Xol VL UTOGUVORO S TV XORUPKDY TOU
o< €loodo, to (éuBapo) mEoBAnua Tou LTOXETMENA AKTKAOY TIOIPASHMATOR
(SFVS) {ntd v ebpeon evog ehayiotou Bdpouc UTOGUVOROL TV XOPLYEY TOU
YEUPAUATOS ELTOOOU TV OTOIWY 1) dpaipean omd oaUTd EYEL WS ATOTEAEGUO AUTO
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VoL Uny €xetl TAoV ETaYOUEVO XUXAO TIOL VoL TEEVAL Al XOpUPT| TTOU AVAXEL GTO S.
Eqgboov ol evbeydueves yevixeloelg Twv e@apuoy®y tou FVS urogel va anantody
Vv entAuon plog yevixeuone tou FVS otn Oéon tou (Blou tou FVS, 1 éMeudn o-
TOBOTIXGY ahyopliuwy yio TNy enthuon tou SEVS unopel va amotehel Tpoyomédn
oTnV Tpaypatonoinon touc. Auth ) napatrenon pog wiel vo emdwiouye TNy Ue-
Aétn tou SFVS. Téoo axpifeic 600 xan mpooeyyloTixol ahyodprduol €youy emtiong
mpotadel xan yioe TNy emiAvon tou SEVS oe yevind ypogruata. To yeyovog oti to
SEVS anotehel yevixeuon tou FVS cuvendyetar 61t efvon xon awuté NP-thfpec
OTOL YEVIXG YROPHUATO, OTA ETUTEDN YRUPHUATI, GTOL OWERT YEUPHUATO XAl OTA
enineda Owepy| yeapruato. H mpdtn onuavtiny| Slapopd 6Ty CUUTERLPORY TeY
0V0 mEOPANudTKY elvon 6T, oe avtideon ye to FVS 1o omolo elvar P ota yopdixd
Yeaphuara, éxet dewydel 6t to SEVS etvon NP-nhfipec ota Staywplouua ypaprjuo-
T, Wlo UTOXAGOT TV Yoedixwy yeagpnudtwy. Enlong oe avtiveon pe to FVS,
BeV UTdEY 0LV TOAVWVUILXS antoTéEAECHATA OTIoL 1) elcodog teplopileton o XAAOELS
Yeapnudtwy avagopwd ue to SEVS otn iBhoypagpia. MNtnv mapoloa dwtely,
Tpotelivoude VEoug ahyoplliuoug SUVAULIXO) TEOYEUUUATIOROY YLoL TNV ETIAUGT] TOU
SFVS ota ypaghuata doeotnudtov o O(n + m + 1) ypbvo xou ota ypophuoto
petodéoewy oe O(m3) ypbévo, 6mou n, m xa I € O(n?) ebvor 10 TARYoc TV
AOPUPWY, TWV OXUMY XL TOV ETAYOUEVWV TELYOVOY TOU YRUPHUATOS ELGODOU
aVTIoTOLY o—T0l TEMTO TOAVOVUUIXE. AmOTEAESHATO avapoptxd pe To SEVS.

H nopoloa diatelfr eivan dounuévn wg axorovdws: To Kegdhao 1 elvon e-
fvan eloaywyixd xe@dAono Tou £QOBLACEL GAOUE TOUG ATOPAUTNTOUSC OPLOUOUE ATd
v Ocwplo IToauxhoxdtnTag xou v Oewpla I'oagpnudtwy. Erlong guholevel
mhnpogopteg yia o FVS xou SFVS. Yto Kegdhowo 2, divouue toug xahlbtepoug
TOALWVLULXOUS ohyoplduoug SuvouLxol TEOYEAUUATIONo) Yia TNV eNAUGT, TOUL
FVS ota ypapruato Slac TUST®Y xon oTal Yeo@Rlota UETAHIECEDY TOU UTEEY 0LV
otn BBhoypapla xou 0T CUVEYELL TEOTEIVOUUE VEOUS ohyopliuous Buvoxo
TEOYPOUUATIONOV TOU TOEOLGLALoUY TNV (Blal YeOoVIXTH) TOAUTAOXOTITO X0l OTOTE-
AoUV TOUC TEOTOUTOUE TV alYopiluwY Wog Yo TNy entiuor Tou SFVS otig (Bieg
xhdoelg ypapnudtwy. To Kegdhaio 3 guho&evel Toug mpoavapepdéviee TOAUWVL-
uxoUg alyopiduoug BuVoLXOU TEOYEUUHATIONOL pag Yia TNy enthuor tou SFVS
OO YRUPAUAUTA OLUC TNUATLY Xt oTo ypophuata petadéocwy. To Kegpdhao 4
ONOXATPOVEL TNV Tapolca SLaTEfn ue pio eviuépworn Tne xatdotaong Twv FVS
xou SEVS xou pla oulrtnon méve o uehhovtiny| €peuvor Xt avolxtd TeoBAAUoT
avagopixd ye to SFVS. Téhog, umdpyer to Hopdptnua A, éva mapdotnua mou
prhogevel oploolg HAMUATIXGY EVVOLDY TIOU YENOCLOTOOUVTOL GTO X0pL0 UEEOG
NG ToEOVGAS BLUTEYBNS XoL OL OTOIEC HEAETMVTAL OE TEDIOL TOV A NUATINGY EXTOG
e Oewplag [ohumhoxotntog xou tne Oswplag I'pagnudtwy.



Abstract

Given a graph with weights on its vertices as input, the (weighted) FEED-
BACK VERTEX SET (FVS) problem asks for a minimum-weight subset of the
input graph’s vertices whose removal from it results in it no longer having an
induced cycle. FVS finds itself among the classical problems of Algorithmic
Graph Theory and has found many applications in other fields of study over
the years, with applications in constraint satisfaction and Bayesian inference,
optical networking and computational biology being some recent additions.
As a natural consequence, FVS solving algorithms have always been a sub-
ject of active research. Both exact and approximation algorithms have been
proposed for solving FVS on general graphs. FVS is N’P-complete on general
graphs, planar graphs, bipartite graphs and planar bipartite graphs. There-
fore, FVS is considered unlikely to be polynomially solvable on those graphs
classes. We also mention that FVS is ZPT on general graphs. FVS is poly-
nomially solvable on interval graphs in O(n+m) time, on permutation graphs
and trapezoid graphs in O(nm) time, on cocomparability graphs and convex
bipartite graphs in O(n?m) time, on AT-free graphs in O(n®m?) time, on
chordal graphs in O(n®) time and on graphs of bounded cliquewidth in O(n)
time, where n and m are the number of vertices and edges of the input graph
respectively.

In this thesis, we study a generalization of FVS called the SUBSET FEED-
BACK VERTEX SET problem. Given a graph with weights on its vertices and a
subset S of its vertices as input, the (weighted) SUBSET FEEDBACK VERTEX
SET (SFVS) problem asks for a minimum-weight subset of the input graph’s
vertices whose removal from it results in it no longer having an induced cycle
that passes through a vertex which is an element of S. Since potential gener-
alizations of FVS applications may require solving a generalization of FVS in
place of FVS itself, the absence of efficient SF'VS solving algorithms may ham-
per their realisation. The above observation compels us to pursue the study

iii
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of SFVS. Both exact and approximation algorithms have also been proposed
for solving SFVS on general graphs. The fact that SE'VS is a generalization of
FVS implies that it is NP-complete on general graphs, planar graphs, bipar-
tite graphs and planar bipartite graphs as well. The first significant difference
in the behaviour of the two problems is that, unlike FVS which is P on chordal
graphs, SFVS was shown to be N'P-complete on split graphs, a subclass of
chordal graphs. Also unlike F'VS, there is no polynomial result where the in-
put is restricted to graph classes regarding SFVS to be found in literature.
In this thesis, we propose novel dynamic programming algorithms for solving
SFVS on interval graphs in O(n + m +[) time and on permutation graphs in
O(m?) time, where n, m and I € O(n?) are the number of vertices, edges and
induced triangles of the input graph respectively—the first polynomial results
regarding SF'VS.

This thesis is structured as follows: Chapter 1 is an introductory chapter
that supplies all the necessary definitions from Complexity Theory and Graph
Theory. It also hosts information on FVS and SFVS. In Chapter 2, we give
the best polynomial FVS solving dynamic programming algorithms on interval
graphs and permutation graphs found in literature and subsequently propose
novel dynamic programming algorithms which excibit the same time complex-
ity and are the precursors of our algorithms for solving SFVS on the same
graph classes. Chapter 3 hosts our aforementioned polynomial SFVS solving
dynamic programming algorithms on interval graphs and permutation graphs.
Chapter 4 concludes this thesis with an update on the state of FVS and SFVS
and a talk on future work and open problems regarding SFVS. Lastly, there is
Appendix A, an appendix hosting definitions of mathematical concepts that
are used in the main matter of this thesis and which are subjects of fields of
mathematics other that Complexity Theory and Graph Theory.
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Chapter 1

Preliminaries

1.1 Complexity Theory

A central question in Computer Science is how to identify which is the
“fastest” way to solve a problem. That is, given two algorithms A; and As
that solve the same problem P, can we say that A; is in some sense “faster”
than As in solving P for all its instances? Complexity Theory gives us a
framework to answer this question mathematically.

In order to compare the speed of two algorithms, we first need to define how
to determine an algorithm’s speed. In Complexity Theory, we do not involve
ourselves with the speed of algorithms per se; we use the amount of time that
they require to be completed instead. To ensure that our measurements do
not depend on the specifics of the hardware that we might be using at any
given time, for otherwise our comparisons would be invalid, we consider the
abstraction that performing an elementary operation requires exactly one time
unit.

A (computational) time complexity function of an algorithm is a function
from N to N that maps an input size to the amount of time the algorithm
requires to be completed when given an input of that size under a certain
scenario, that is, which satisfies a certain assumption.

e Under the best-case scenario, the input size is maped to the least amount
of time the algorithm may require to be completed when given an input
of that size.
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e Under the average-case scenario, the input size is maped to the average
amount of time the algorithm may require to be completed when given
an input of that size.

e Under the worst-case scenario, the input size is maped to the greatest
amount of time the algorithm may require to be completed when given
an input of that size.

Even though all three aforementioned scenarios provide insight into an al-
gorithm’s performance, the worst-case scenario is the one that gives us a per-
formance guarantee; an algorithm will always be completed faster than or as
fast as it does under the worst-case scenario. In this thesis, we exclusively
study the time complexity of algorithms under the worst case scenario.

Practice shows that being faster than others on small input sizes is irrelevant
for an algorithm; algorithms are so fast on small input sizes that their perfor-
mance differences in that regard are negligible. What we need is algorithms
whose time complexity scales as best as possible with the input size, that is,
it grows as slow as possible as the input size grows; given two algorithms A;
and As that solve the same problem P, if A;’s time complexity scales better
with the input size than As’s , A; will eventually outperform As when the
input size becomes sufficiently large—exactly where it counts.

1.1.1 Asymptotic Notation

We use f(n) to denote a function f: N — N, n— f(n).

Definition 1.1.1 (Big O). A function f(n) is (in) O(g(n)) if there are con-
stants N € N and ¢ € R such that f(n) < cg(n) for all n € N greater or equal
to N or, equivalently, if

f(n)

lim —— < o0.

n—oo g(n)
Definition 1.1.2 (Big Omega). A function f(n) is (in) 2(g(n)) if there are
constants N € N and ¢ € R such that cg(n) < f(z) for all n € N greater or
equal to IV or, equivalently, if

Definition 1.1.3 (Big Theta). A function f(n) is (in) ©(g(n)) if it is both
O(g(n)) and (g(n)).
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The asymptotic notations of O, Q2 and O essentially define classes of func-
tions that asymptotically grow at most, at least and exactly as fast as g(n)
respectively. Thus, we may use asymptotic notation to compare algorithms
in terms of time complexity. If the time complexity of an algorithm (as a
function) is of a certain kind, then we may say that the algorithm itself is
of the same kind. For example, we may say that an algorithm is polynomial
if its time complexity is O(p(n)) for some polynomial function p(n) where n
denotes the size of its input.

1.1.2 Complexity Classes

For solving a particular problem, however, many algorithms excibiting many
different time complexities may exist. This implies that the time complexity
of a problem itself cannot not be determined from the time complexity of any
single algorithm solving it. We define the time complexity of a problem to be
the best among the time complexities of all algorithms that solve it. Since, of
course, we may not already know all algorithms solving a particular problem,
we consider its time complexity to be the best among the time complexities
of all algorithms solving it that we already known.

In order to take advantage of the fact that problems requiring the same
time complexity to be solved may also excibit similar structure and vice versa,
we define complexity classes of problems. Complexity classes are collections
of problems and form a hierarchy according to the order of set inclusion. We
subseqgeuntly define all complexity classes mentioned in this thesis. For more
information on complexity, complexity classes and where many problems are
currently standing, the reader may refer to [20].

Polynomial

A problem is (in) Polynomial if there is a polynomial algorithm solving it.

Non-deterministic Polynomial

A problem is (in) N on-deterministic Polynomial if there is a polynomial
algorithm solving its solution-verification problem, that is, the problem of
verifying whether a candidate solution indeed is a solution.
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NP-hard

(a) (b)

Figure 1.1: Euler diagrams of the P, NP, N"P-hard and NP-complete com-
plexity classes (a) if P # NP and (b) if P = NP.

P=NP=
NP-complete

Apolynomial reduction of a problem P; to another problem P is a polyno-
mial algorithm transforming any instance of P; to an instance of Ps.

A problem is (in) N'P-hard if there is a polynomial reduction of P to it for
all P € NP. A problem is (in) N'P-complete if it is both NP and N'P-hard.

The non-deterministic complexity classes play a central role in Complexity
Theory, because many important problems were shown to be in them. What is
arguably the most famour open problem in all Computer Science, the P versus
NP problem, asks whether P is equal to NP or not. Figure 1.1 illustrates
those two possibilities.

Fixed Parameter Tractable

We may choose to consider the time complexity of an algorithm (and con-
sequently of a problem) to be a function of any number of parameters of its
input instead of the typical choice of only the size of its input.

A problem is (in) Fized Parameter Tractable if there is an O(f(k)p(n))
algorithm solving it for an arbitrary function f(k) and a polynomial function
p(n) where n and k are the size and another parameter of its input respectively,
that is, there is an algorithm solving it which is polynomial provided a certain
parameter of its input other than its size is considered fixed.
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Figure 1.2: Petersen’s graph.

1.2 Graph Theory

The term ‘graph’ in a mathematical context is most commonly used to refer
to the graphical representation of a function. In the specific context of Graph
Theory, however, the term ‘graph’ is used to refer to objects like the one shown
in Figure 1.2. In this section, we provide definitions regarding those objects
including characteristics that they might excibit, relations that they may have
to one another and collections that they might be part of.

1.2.1 Fundamental Concepts

A (simple undirected) graph is an ordered pair G = (V, E) of sets such that
E C{{u,v} :u,v € V and u # v}. V is called the vertex set (and its elements
are called vertices) of G and E is called the edge set (and its elements are called
edges) of G. We commonly use n and m to denote |V| and |E| respectively.
The graphical representantion of a graph is shown in Figure 1.2; a vertex of
the graph is represented by a point and an edge between two vertices by a line
segment connecting the two points that represent the vertices.

We say that an edge between two vertices directly connects those vertices;
the vertices it directly connects are called adjacent or neighbouring. The neigh-
bourhood of a vertex i in a graph is the set of all other vertices that are adjacent
to ¢ in the graph. We use N (i) to denote the neighbourhood of i. We say that
a vertex that has an empty neighbourhood is isolated.

A path between two vertices in a graph is a (finite) sequence of vertices of
the graph such that the two vertices occupy the first and last positions in the
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sequence and all vertices that occupy subsequent positions in the sequence are
adjacent. We say that a path between two vertices connects those vertices. A
graph is connected if all its vertices are pairwise connected. For a connected
graph, since no vertex is isolated, m € Q(n). The length of a path is its
length as a sequence minus one. The distance of two vertices in a graph is the
minimum among all the lengths of paths between them in the graph.

A subgraph of a graph G = (V,E) is a graph G' = (V', E’) such that
V' CVand E' C {{u,v} € E : u,v € V'}. The subgraph of G induced
by a set X C V is the subgraph G’ = (V' E’) of G such that V' = X and
E' = {{u,v} € E : u,v € V'}. We use G[X] to denote the subgraph of G
induced by X.

1.2.2 Graph Classes

In order to handle graphs exhibiting common structure together, we define
graph classes. Graph classes are collections of graphs and form an hierarchy
according to the order of set inclusion.

Most graph classes have more that one equivalent definitions, called charac-
terizations. Researchers are always on the lookout for new characterizations of
known graph classes, because a problem may be easier and/or faster to solve
on a graph class when using one of its characterizations instead of another. A
common and much sought after type of characterization is for the members of
a class to be C-free where C is a collection of graphs. In that characterization,
C acts as a list of forbidden induced subgraphs; members of the class have no
induced subgraph listed in C'. Another sought after characterization is that of
an intesection model. An intersection model of a graph is a collection of sets
for which there is a one-to-one correspondence from the sets of the collection
to the vertices of the graph such that two vertices are adjacent if and only if
their corresponding sets are intersecting.

We subsequently characterize all graph classes mentioned in this thesis. For
more information on these graph classes and more, the reader may refer to [6].

Independent Sets

An independent set is a graph that has no edge.



1.2. GRAPH THEORY 7

0 0 0
5 1 5 1 5 1
4 2 4 2 4 2
3 3 3
(a) (0,1,2,3,4,5). (b) An even cycle having (¢) A clique of six ver-
an odd chord. tices.
Figure 1.3

Cliques

A clique is a graph that has all possible edges between its vertices.

Cycles

A (chordless) cycle is a graph G for which there is a one-to-one correspon-
dence from the integers of Z,, to the vertices of G such that two vertices are
adjacent if and only if their corresponding integers differ by 1 modulo n. If
i — v; for all i € Zy,, then G = (vg,v1,...,v,-1). An even (odd) cycle is a
cycle of an even (odd) number of vertices. In this thesis, we call a cycle of
three vertices a triangle and a cycle of four vertices a square.

A chord is an edge that G has in addition to those of the chordless cycle.
An odd (even) chord is a chord between two vertices whose distance in the
chordless cycle is odd (even).

Forests

The class of forests is the class of cycle-free graphs; that is, a forest is a
graph that has no induced cycle.

Planar Graphs

A planar graph is a graph that can be graphically represented on a plane
such that the line segments representing its edges are pairwise disjoint.
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Bipartite Graphs

A bipartite graph is a graph G = (V, E) for which there is a partition of V'
into A and B such that G[A] and G[B] are both independent sets.

Convex Bipartite Graphs

A convex bipartite graph is a bipartite graph G = (A, B, E) for which there
is a total order < of A such that every B-vertice has all its neighbouring
A-vertices be consecutive with respect to <.

Convex bipartite graphs form a subclass of bipartite graphs.

Chordal Graphs

The class of chordal graphs is the class of {{vp,v1,...,vp-1) : n > 4}-
free graphs; that is, a chordal graph is a graph whose induced cycles are all
triangles, or, equivalently, a graph whose induced cycles that aren’t triangles
have a chord.

Strongly Chordal Graphs

A strongly chordal graph is a chordal graph whose induced even cycles have
an odd chord.

Strongly chordal graphs form a subclass of chordal graphs.

Split graphs

A split graph is a graph G = (V, E) for which there is a partition of V' into
A and B such that G[4] is a clique and G[B] is an independent sets.

Split graphs form a subclass of chordal graphs.
AT-free Graphs

An asteroidal triple of a graph G are three vertices of GG for which there
is a path in G between any two of them such that it does not pass through
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the neighbourhood of the third one. An AT-free graph is a graph that has no
asteroidal triple.

Cocomparability Graphs

A cocomparability graph is a graph for which there is an irreflexive and
transitive relation R on its vertex set such that two vertices are adjacent if
and only if they are not comparable with respect to R.

Cocomparability graphs form a subclass of both {(vg, v1,...,vp-1) : n > 5}-
free graphs and AT-free graphs.

Trapezoid Graphs

A trapezoid graph is a graph G for which there is a collection C of trapezoids
on the plane that all have two of their edges be line segments of the same two
parallel lines and a one-to-one correspondence of trapezoids of C to vertices
of G such that two vertices are adjacent if and only if their corresponding
trapezoids are intersecting.

Trapezoid graphs form a subclass of cocomparability graphs.

Permutation Graphs

A permutation graph is a graph G for which there is a permutation 7 :
{1,2,...,n} — {1,2,...,n} and a one-to-one correspondence of integers of
{1,2,...,n} to vertices of G such that two vertices are adjacent if and only if
7 reverses their corresponding integers’ relative order.

Permutation graphs form a subclass of trapezoid graphs.

Interval Graphs

An interval graph is a graph G for which there is a collection C of closed
intervals of R and a one-to-one correspondence of intervals of C to vertices of G
such that two vertices are adjacent if and only if their corresponding intervals
are intersecting.

Interval graphs form a subclass of both chordal graphs and permutation
graphs.
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1.2.3 Graph Parameters

Many important NP-complete problems are graph-related. To help extend
the study of those problems’ time complexity to complexity measures beyond
simply graph size, many graph parameters, measures of various aspects of a
graph’s structure, were devised. One such measure mentioned in this thesis is
cliquewidth, which was first introduced by Courcelle et al. [9, 10].

Cliquewidth

The cliquewidth of a graph is the minimum number of distinct labels needed
to construct a copy of it with labeled vertices when the only available opera-
tions to do so are

e creating a single-vertex graph with its vertex labeled i,
e the disjoint union of two thusly-constructed graphs with labeled vertices,

e changing the labels of all vertices labeled 4 on a thusly-constructed graph
with labeled vertices from ¢ to j and

e directly connecting all vertices labeled ¢ on a thusly-constructed graph
with labeled vertices to all its vertices labeled j.

1.3 The Problems

The two problems we involve ourselves with in this thesis are both special
cases, called variants by some authors, of the FEEDBACK SET (FS) problem.
Given a graph G as input, all FS variants ask for a set of certain elements
of G such that certain induced cycles of G are no longer induced cycles once
those elements are removed. We state the formal definitions of the two afore-
mentioned problems and information regarding their tractability below. For
more information on recent developments in FS related research, the reader
may consult [15].

1.3.1 Feedback Vertex Set

A feedback verter set of a graph G = (V,E) is a set U C V such that
G[V \ U] is a forest.
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Given a graph G = (V,E) (along with a weight function w : V" — R)
as input, the (weighted) FEEDBACK VERTEX SET (FVS) problem asks for a
feedback vertex set of G that has minimum cardinality (weight) among all
feedback vertex sets of G.

FVS finds itself among the classical problems of Algorithmic Graph Theory
and has found many applications in other fields of study over the years, with
applications in constraint satisfaction and Bayesian inference [13, 12, 1], optical
networking [22] and computational biology [18] being some recent additions.
As a natural consequence, FVS solving algorithms have always been a subject
of active research. Both exact [16] and approximation [2] algorithms have been
proposed for solving FVS on general graphs.

FVS is N'P-complete on general graphs. In fact, it was one of the first
problems that were shown to be N'P-complete; it was included in Karp’s list
of 21 N'P-complete problems [21]. It is also N'P-complete on planar graphs
[20], bipartite graphs [30] and planar bipartite graphs [29]. Therefore, FVS
is considered unlikely to be polynomially solvable on those graph classes. We
also mention that FVS is FPT on general graphs [7].

When a problem is shown to be NP-complete on general graphs, we start
searching for graph classes on which it is P. Research in that regard for
FVS has been fruitious; the list of graph classes on which it was shown to be
polynomially solvable includes interval graphs [27], permutation graphs [24],
trapezoid graphs, cocomparability graphs and convex bipartite graphs [25],
AT-free graphs [23], chordal graphs [8] and graphs of bounded cliquewidth
(28, 19].

Figure 1.4 shows a graphical representation of the hierarchy of most of
the graph classes that we mention in this thesis augmented with the best
known results regarding F'VS on them found in literature. For the behaviour
of problems on graph classes, it is not difficult to show the following:

e A problem that is NP-complete on a graph class is also NP-complete
on all superclasses of that graph class.

e An algorithm that solves a problem on a graph class in O(g(n)) time
also solves it on all subclasses of that graph class in O(g(n)) time.

1.3.2 Subset Feedback Vertex Set

Definition 1.3.1. Let G = (V, E) be a graph and S C V. Then
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0(n®m?) [23]

bipartite {(vo, V1) e, Vo1 )i
n = 5}-free

planar bipartite convex bipartite

0(n%*m) [25]

A 4 A\ 4

[ strongly chordal ] trapezoid

v v
[ bounded cliquewidth ] interval permutation
oG 5] owrmen |
Figure 1.4: Best known results regarding F'VS on the listed graph classes. An
arrow between two graph classes indicates that the source is a superclass of
the target. Graph classes are colored black if FVS is NP-complete on them,

gray if its behaviour on them is unknown and white if it is P on them. (We
follow this style throughout this thesis.)

e an S-vertex is a vertex that is an element of S,
e an S-cycle is a cycle that has an S-vertex and

e an S-forest is an S-cycle-free graph; that is, an S-forest is a graph that
has no induced S-cycle.

An S-feedback vertex set of a graph G = (V, E) where S C Visaset U CV
such that G[V'\ U] is an S-forest. Whevener the subset S is unspecified or not
subject to confusion, we use the term subset feedback vertex set instead.

Given a graph G = (V, E) along with a set S C V (and a weight function
w : V — R) as input, the (weighted) SUBSET FEEDBACK VERTEX SET (SFVS)
problem asks for an S-feedback vertex set of G that has minimum cardinality
(weight) among all S-feedback vertex sets of G.

Both exact [17] and approximation [14] algorithms have also been proposed
for solving SFVS on general graphs. SFVS naturally generalises FVS; we
may solve FVS on a graph G = (V, E) by solving SFVS on G for S = V.
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bipartite {(vo, V1) ooy Vo1 )t AT-free
n = 5}-free

A
planar bipartite convex bipartite chordal cocomparability

A\ 4
o]l [ strongly chordal ] trapezoid
A 4

v
[ bounded cliquewidth ] interval permutation

Figure 1.5: Best known results regarding SFVS on the listed graph classes.

This implies that SFVS is ANP-complete on general graphs, planar graphs,
bipartite graphs and planar bipartite graphs as well. We also mention that
SFVS is FPT on general graphs [11].

The first significant difference in the behaviour of the two problems is that,
unlike FVS which is P on chordal graphs, SFVS was shown to be NP-complete
on split graphs, a subclass of chordal graphs [17]. Also unlike FVS, there is
no polynomial result where the input is restricted to graph classes regarding
SFVS to be found in literature.

Figure 1.5 shows a graphical representation of the same hierarchy of graph
classes as Figure 1.4 augmented with the best known results regarding SFVS
on them found in literature.
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Chapter 2

Solving FVS in Polynomial
Time

In this chapter, we present the best know dynamic programming algorithms
for solving FVS on interval graphs [27] and permutation graphs [24] in polyno-
mial time found in literature as well as our own novel dynamic programming
algorithms for solving it on the same graph classes in the same times. These
algorithms do not find a feedback vertex set of the input graph that has mini-
mum weight directly and return it; they find a forest-inducing vertex set of the
input graph that has maximum weight and return the set of all other vertices
instead. Throughout this chapter, we use F to denote the collection of all
induced forests of the input graph.

2.1 Best Known Algorithm on Interval Graphs

In this section we reproduce the O(n+m) dynamic programming algorithm
for solving FVS on interval graphs proposed by Lu and Tang in [27]. Mi-
nor adjustments to definitions, notation and presentation have been made to
improve readability without alteration of the results. All proofs are omitted.

We assume that we are given an interval graph G = (V| FE) along with
a corresponding collection of closed intervals of R where all endpoints are
distinct and a weight function w : V' — R as input. Wherever max,, is called
in this section, it returns an arbitrary choice that has maximum weight among
all its operands. We add an isolated dummy vertex that has non-positive

15
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weight to G and we add a dummy interval that has minimum right endpoint
to the given collection as its corresponding interval. We consider vertices
of G to be equivalent to their corresponding intervals and to the integers of
{0,1,...,n} that indicate their position when sorted in ascending order of
their corresponding intervals’ right endpoints.

For every vertex i of G, we use a(i) and b(7) to denote its corresponding
interval’s left and right endpoint respectively. We consider the relation on V
that is defined by

i<pj <= b(i) <b(j)

for all 7,7 € V. Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that <, is a total order on V. Wherever max, is called
in this section, it returns the maximum among its operands with respect to
<,. We define some predecessors with respect to <, and the V-sets, which
correspond to the subproblems that Lu and Tang’s [27] dynamic programming
algorithm wants to solve.

Definition 2.1.1 (Predecessors). Let ¢ € V' \ {0}. Then
<i=max{h € V:h <, iand {h,i} ¢ E}.
T
Ezample 2.1.1. For the interval graph that has

o { h=24,12=[1,6],1s=[7.8], 1, = [5,10],
_{ Is = [3,11), I = [9,13], I; = [12, 14] }

as a corresponding collection of closed intervals of R, < 6 = 3.
Definition 2.1.2 (V-sets). Let i,j € V such that i <, j. Then
Vij={h eV :h < i} U{j}.
Now, we define the sets that Lu and Tang’s [27] dynamic programming

algorithm computes in order to conpute the forest-inducing vertex set of G
that has maximum weight.

Definition 2.1.3 ([27]). Let i,j € V such that i <p j. Then
o A;;j =max,{X CV;;:G[X]e F},
e B;j =max,{X CV;;:G[X] € Fandi,je X} and
o (;j =max,{X CV;;:GX| € Fandjec X}
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Observe that, since V,—1, =V, 4,1, = max,{X CV : G[X] € F}. The
following lemmas state how to recursively compute all the sets of Definition
2.1.3.

Lemma 2.1.1 ([27]). Leti,j € V such that i <, j.

(1) If i = 0, then Apj; = max,, {9, {j}}.
(2) If i £ 0 and b(Z) < a(j), then Aij = mMaXy, {Ai—l,ia Ai—l,i @] {j}}
(3) If i # 0 and a(j) < b(i), then A;; = maxy, {Ai—14, Ai—15, Bi;}-

Lemma 2.1.2 ([27]). Leti,j € V such that i <, j.

(1) If i =0, then By = {0, j}.

(2) Ifi # 0 and b(i) < a(j), then Bi; = Ci_1; U {j}.

(3) If i # 0 and a(j) < a(i), then Bij = Ceyj U {i}.

(4) Ifi # 0 and a(i) < a(j) < b(i), then Bi; = Cecji U {j}-
Lemma 2.1.3 ([27]). Leti,j € V such that i <, j.

(1) IfZ = 0, then COJ' = {j}
(2) If i # 0 and b(i) < a(j), then C;j = A;i—1,; U{j}.
(3) If i # 0 and a(j) < b(i), then C;j = max,, {Ci—1,5, Bi j}.

Theorem 2.1.4 ([27]). The dynamic programming algorithm shown in Figure
2.1 returns a feedback vertexr set of G that has minimum weight in O(n + m)
time.

2.2 Best Known Algorithm on Permutation Graphs

The first algorithm to solve FVS on permutation graphs was an O(n®) dy-
namic programming algorithm proposed by Brandstddt and Kratsch in [4, 5].
The time complexity was later improved to O(nmm) where m is the number of
edges in the input graph’s complement by Brandstédt in [3] and subsequently
to O(nm) by Liang in [24]. In this section we reproduce the O(nm) dynamic
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fori:=0ton—1
if 7 # 0 then compute < i of Definition 2.1.1;
for j:=i+1ton
compute B; ; according to Lemma 2.1.2;
compute A; ; according to Lemma 2.1.1;
compute C; ; according to Lemma 2.1.3;
if {i,j} ¢ E then break;
end for
end for

return V \ A,_1 p;

Figure 2.1: Lu and Tang’s [27] dynamic programming algorithm for solving
FVS on an interval graph.

programming algorithm proposed by Liang in [24]. Minor adjustments to def-
initions, notation and presentation have been made to improve readability
without alteration of the results. All proofs are omitted.

We assume that we are given a connected permutation graph G = (V, F)
along with a corresponding permutation 7 of G and a weight function w : V' —
R as input. Wherever max,, is called in this section, it returns an arbitrary
choice that has maximum weight among all its operands. We add an isolated
dummy vertex that has non-positive weight to G and we add 0 — 0 to 7 as
its first column where 0 is its corresponding integer. We consider the vertices
of G to be equivalent to their corresponding integers in 7’s domain.

We consider the two relations on V' defined by

for all 7,5 € V. It is not difficult to show that both <; and <, are total orders
on V; they are exactly the orders in which the integers appear on the top and
bottom row of 7 respectively.

Liang’s [24] dynamic programming algorithm iterates on elements called
ordered crossing vertex pairs. We define the following collections of such ele-
ments:

X={ijeV?:i<,jand j <pi}

I={ijeV?*:i=j}cax
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Observe that for every ij € X, if i # j, then {i,j} € E. We consider the two
relations on X defined by

gh<,ij <= g<piand h<;j
gh<lrij «— g<piorg=iandh <,

for all gh,ij € X. It is not difficult to show that <, is a partial order on
X, which we call the right-endpoints product order, whereas <! is a total
order on X, which we call the and right-endpoints lexicographic order. We
also note that gﬁ?i is a linear extention of <,. Wherever max, is called in this
section, it returns the maximum among its operands with respect to <,. We
define some predecessors with respect to <, and the V-sets, which correspond
to the subproblems that Liang’s [24] dynamic programming algorithm wants
to solve.

Definition 2.2.1 (Predecessors). Let ij € X' \ {00}. Then

/Lj — maXT{gh € C . gh <'r Z,] and h #]}7

<
< ij = max,{gh € C: gh <, ij and g # i},
o <ij=max,{ghe€C:gh<,ijand g #iand h+# j} and

o <ij =maxy{gh€C:gh<,ijand {g,i},{g,7},{h,i},{h,j} ¢ E}.

Ezxample 2.2.1. For the permutation graph that has
o 1 345 6 7 8
S\ 2 6 3 1 7 45

as a corresponding permutation of {1,2,3,4,5,6,7,8}, € 57 = 56, < 57 =47,
< 57 = 46, < 57 = 13 and £ 36, < 36, < 36, < 36 = 22.

oo N

Definition 2.2.2 (V-sets). Let ij € X. Then V;; = {h € V : hh <, ij}.

Now, we define the sets that Liang’s [24] dynamic programming algorithm
computes in order to compute the forest-inducing vertex set of G that has
maximum weight.

Definition 2.2.3 ([24]). Let ij € X and k € V' \ V;;. Then

o A;j = max,{X CV;;: G[X] € F},
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° B” = Hlan{X C v;] : G[X] € F and Z"] = X}
provided i # j,

o Cijr =max,,{X CV;; U{k}:G[X] e Fand ke X}
provided ¢ <y k,

® Djjr =max,{X CV;; U{k}:G[X] € Fandkec X}
provided j < k,

o B =max,{X CV;; U{k}:G[X] € Fandi,jkeX}
provided ¢ # j, i <p k and k <; j and

o Fij=max,{X CV;; U{k}:G[X] € Fandi,jkeX}
provided ¢ # j, k <p i and j <y k.

Observe that, since Vyp = {0} and w(0) <0, Ago = @ and Cyor = Do =
{k} for all k € V' \ {0} and, since Vi(n), = V, Ay = max,{X C V :
G[X] € F}. The following lemmas state how to recursively compute all sets

of Definition 2.2.3 other than Aoy and Co, and Dygy, for all k € V'\ {0}.
Lemma 2.2.1 ([24]). Letij € X\ {00}. Then A;j = By for some gh <, ij.
Lemma 2.2.2 ([24]). Leti € V \ {0}. Then A;; = maxy, {A<ii, Acii U {i}}.
Lemma 2.2.3 ([24]). Letij € X \Z. Then A;j = max,, {Azj, A<ij, Bij}.
([24]).

Lemma 2.2.4 ([24]). Letij € X \Z. Then

Bij = max {A«ij U {i,j}, Cjji U{i}s Deciig U{i}} -
Lemma 2.2.5 ([24]). Letij € X\ {00} and k € V' \ Vi such that k <, j.

(]) If i =j, then Cii,k = maXy, {C<z’i,ka C<ii,k U {Z}}
(2) IfZ 7é j, then Cij,k — InaXy, {Céij,kv Cgij,kv Eij,k}-
Lemma 2.2.6 ([24]). Letij € X\ {00} and k € V '\ Vi; such that k <y i.

(1) If i = j, then Dy, = maxy {D<ji g, Deiip U {i}}.
(2) Ifi # j, then Dyjj, = maxy {Dzijk, D<ijr, Fijr}-

Lemma 2.2.7 ([24]). Letij € X \Z and k € V' \ Vi such that i <; k <; j.
Then

Eijr = max {Ccrji U4, k}, Diij U {i, k}} .
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compute a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <!¢*
and all predecessors of Definition 2.2.1 according to [26];

for 75 in R
if ¢ # j then compute B;; according to Lemma 2.2.4;
compute A;; according to Lemmas 2.2.2 and 2.2.3;
for k:=1ton
ifi#£j
if © <p k and k <; j then compute E;;; according to Lemma 2.2.7;
if k <p ¢ and j <4 k then compute Fj;; according to Lemma 2.2.8;
end if
if i <, k then compute Cj; according to Lemma 2.2.5;
if j <; k then compute D;; according to Lemma 2.2.6;
end for
end for

return V' \ Az

Figure 2.2: Liang’s [24] dynamic programming algorithm for solving FVS on
a permutation graph.

Lemma 2.2.8 ([24]). Letij € X \Z and k € V' \ Vj; such that j < k <j 1.
Then

Fijr = max {Ceji U {Jj, b}, Decir,j U {i, k}} -

Theorem 2.2.9 ([24]). The dynamic programming algorithm shown in Figure
2.2 returns a feedback vertex set of G that has minimum weight in O(nm) time.

2.3 Our New Algorithm on Interval Graphs

In this section we propose a novel O(n+m) dynamic programming algorithm
for solving F'VS on interval graphs as a precursor to the dynamic programming
algorithm of Section 3.1 for solving SF'VS on interval graphs.

We assume that we are given an interval graph G = (V| F) along with a
corresponding collection of closed intervals of R where all endpoints are distinct
and a weight function w : V. — R as input. We extend w such that if it is
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called with a set of vertices, then it returns the sum of their respective weights.
Wherever max,, is called in this section, it returns an arbitrary choice that has
maximum weight among all its operands. We add an isolated dummy vertex
that has non-positive weight to G and we add a dummy interval that has
minimum right endpoint to the given collection as its corresponding interval.
We consider vertices of G to be equivalent to their corresponding intervals
and to the integers of {0,1,...,n} that indicate their position when sorted in
ascending order of their corresponding intervals’ right endpoints.

For every vertex i of G, we use a(i) and b(i) to denote its corresponding
interval’s left and right endpoint respectively. We consider the two relations
on V that are defined by

for all 7,j € V. Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that <; and <, are total orders on V. Wherever min; is
called in this section, it returns the minimum among its operands with respect
to <;; and wherever max, is called in this section, it returns the maximum
among its operands with respect to <,. We define some predecessors with
respect to <, and the V-sets, which correspond to the subproblems that our
dynamic programming algorithm wants to solve.

Definition 2.3.1 (Predecessors). Let i € V' \ {0}. Then

o <i=max,{h €V :h<,i}and
e <i=max,{h €V :h<,iand {h,i} ¢ E}.
Ezample 2.3.1. For the interval graph that has

oo [ n=124,1=16],1; = 7,81 = [5,10],
_{ Is = [3,11], I = [9,13], I; = [12, 14] }

as a corresponding collection of closed intervals of R, < 6 =5 and <« 6 = 3.
Definition 2.3.2 (V-sets). Let i € V. Then V; ={h € V : h <, i}.
Observation 2.3.1. Leti € V\{0} and j € V\V; such that {i,j} € E. Then

(1) Vi =V U{i} and
(2) Vo= V<<j @] {h eV {h,]} S E}
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Now, we define the sets that our dynamic programming algorithm computes
in order to conpute the forest-inducing vertex set of G that has maximum
weight.

Definition 2.3.3 (A-sets). Let i € V. Then,
A; = max A; = max{X CV;: G[X] € F}.
Definition 2.3.4 (B-sets). Let i € V and z € V' \ V;. Then,
BY = max B = max{X CV;: G X U{x}] € F}.
Observe that, since Vp = {0} and w(0) < 0, Ay = & and, since V,, = V,

A, = max,{X C V : G[X] € F}. The following lemmas state how to
recursively compute all A-sets and B-sets other than Ag.

Lemma 2.3.2 (A-sets). Leti € V \ {0}. Then A; = max,, {A<;, BL; U{i}}.

Proof. Let i € V' \ {0}.
Let ¢ ¢ A;. By this fact, Observation 2.3.1(1) and Definition 2.3.3, it follows

that
A; e A w(4;) < w(As) -
A€ A w(A<;) < w(A;)

= ’LU(AZ) = w(A<z~) = Az = A<i.

Let ¢ € A;. By this fact, Observation 2.3.1(1) and Definitions 2.3.3 and
2.3.4, it follows that

A\ {i} € B, w(A; \ {i}) < w(B%,)
B, U{i} € A4 } = w(B, U{i}) < w(A;) } =

= w(A;) = w(BL;U{i}) = 4; = BL; U {i}. O
Lemma 2.3.3 (B-sets). Leti €V and x € V \ V;.

(1) If {i,x} ¢ E, then Bf = A;.

<Ly
where ' = ming{i, 2z} and y' = min;({i, 2} \ {2'}).

(2) If {i,a} € B, then B¥ = max, {Bﬁi, BY U {i}}
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Proof. Let i € V and z € V\ V.

(1) Let {i,x} ¢ E. Then b(i) < a(x), so the neighbourhood of z in G[V; U
{z}] is @. Consequently, no subset of V; U {x} that contains x induces a cycle
of G. By this fact and Definitions 2.3.3 and 2.3.4, it follows that

BY € A; N w(Bf) < w(4;) N

(2) Let {i,z} € E.
Let i ¢ BF. By this fact, Observation 2.3.1(1) and Definition 2.3.4, it follows

that
B € B, w(BF) < w(B,)
BzeB%}i’ w(BZ) <w(B?) [~

= w(B}) = w(B%;) = B = BZ,.

Let i € Bf. By this fact and Observation 2.3.1(1), it follows that (i) Bf \
{i} C V.. We define 2/ = min{é,z} and y' = miny({i,z} \ {2'}). Let
h € BF \ {i} such that {h,y'} € E. Then

a(z') < a(y’) < b(h) < b(z'),b(y’) = {h,2'} € E.

Consequently, (h,2’,y’) is an induced triangle of G, a contradiction, so {h,y'} ¢
E for all h € BY \ {i}. By this fact, (i) and Observation 2.3.1(2), it follows
that (ii) BY \ {i} C V. The neighbourhood of y' in G[V, U{a’,y'}] is {2'}.
Consequently, no subset of V,y U {a’,y'} that contains 3 induces a cycle of
G. By this fact, (ii) and Definition 2.3.4, it follows that

B \{i} € BZ, L wBIA{}) < w(BZ,) N
BZ , U{i} € BY w(BL,, U{i}) < w(BY)
= w(BY) = w(B%, U{i}) = Bf = BY,, U {i}. O

Theorem 2.3.4. The dynamic programming algorithm shown in Figure 2.3
computes a feedback vertex set of G that has minimum weight in O(n + m)
time.
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compute a list £ containing all vertices of V'
sorted in descending order with respect to <; and
a list R containing all vertices of V/
sorted in ascending order with respect to <;;

Ay = O
B(% =g

for ¢ in R starting from i :=1
compute < ¢ and < ¢ of Definition 2.3.1;
compute A; according to Lemma 2.3.2;
for x in reverse L starting from z :=1
if x = ¢ then continue;
compute B according to Lemma 2.3.3;
if {i,z} ¢ E then break;
end for
end for

return V' \ Ay;

Figure 2.3: Our dynamic programming algorithm for solving FVS on an in-
terval graph.
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Proof. The correctness of the algorithm follows from Lemmas 2.3.2 and 2.3.3.
The computation of a single predecessor, A-set or B-set takes constant time.
The number of iterations performed is

o> 1+ > 1] | =0mn+m)
)

eV zeN(i

Therefore, the total time complexity of the algorithm is O(n + m). O

2.4 Our New Algorithm on Permutation Graphs

In this section we propose a novel O(nm) dynamic programming algorithm
for solving FVS on permutation graphs as a precursor to the dynamic pro-
gramming algorithm of Section 3.2 for solving SFVS on permutation graphs.

We assume that we are given a connected permutation graph G = (V, E)
along with a corresponding permutation 7 of G and a weight function w : V' —
R as input. As any vertex that has non-positive weight would be automatically
included in a feedback vertex set that has minimum weight, we may also
assume that all vertices have positive weight. We extend w such that if it is
called with a set of vertices, then it returns the sum of their respective weights.
Wherever max,, is called in this section, it returns an arbitrary choice that
has maximum weight among all its operands. We add an isolated dummy
vertex that has non-positive weight to G and we add 0 — 0 to 7 as its first
column where 0 is its corresponding integer. We consider the vertices of G to
be equivalent to their corresponding integers in 7’s domain.

We consider the two relations on V' defined by
1<t <= 1<]
i<pj = 7 @) <7 ()
for all 4,7 € V. It is not difficult to show that both <; and <; are total orders

on V; they are exactly the orders in which the integers appear on the top and
bottom row of 7 respectively.

Our dynamic programming algorithm iterates on ordered crossing vertex
pairs. We define the following collections of ordered crossing vertex pairs:

X={ijeV?:i<;jand j <pi}

IT={ijeV?*:i=j}cax
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Observe that for every ij € X, if i # j, then {i,j} € E. We consider the two
relations on X defined by

gh <,ij <= g<piand h<;j
gh<lrij «— g<piorg=iandh <,

for all gh,ij € X as well as the two relations on X defined by

ry < zw — z<zandy < w
zy <l zw = r<;zorz=zandy<w

for all xy, zw € X. It is not difficult to show that <; and <, are partial orders
on X, which we call the left-endpoints and right-endpoints product order
respectively, whereas gﬁ“ and <!*® are total orders on X, which we call the
left-endpoints and right-endpoints lexicographic order respectively. We
also note that gfez and Sffn are linear extentions of <; and <, respectively.
Wherever min; is called in this section, it returns the minimum among its
operands with respect to <;; and wherever max, is called in this section, it
returns the maximum among its operands with respect to <,. We define
some predecessors with respect to <, and the V-sets, which correspond to the
subproblems that our dynamic programming algorithm wants to solve.

Definition 2.4.1 (Predecessors). Let ij € X' \ {00}. Then

ij = max,{gh € C: gh <, ij and h # j},

ij = max,{gh € C : gh <, ij and g # i},

V/ANAN

[ ]
e <ij=max{gh€C:gh<,ijand g # ¢ and h # j} and

o <ij =max.{gh€C:gh<,ijand {g,i},{g,7},{h,i},{h,j} ¢ E}.

Ezample 2.4.1. For the permutation graph that has

o 1 345 6 7 8
S\ 2 6 3 1 7 45
as a corresponding permutation of {1,2,3,4,5,6,7,8}, € 57 = 56, < 57 =47,
< B7 =46, < 57 =13 and <€ 36,< 36, < 36, < 36 = 22.

o0 N

Definition 2.4.2 (V-sets). Let ij € X. Then V;; = {h € V : hh <, ij}.

Observation 2.4.1. Letij € X. Then
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(1) Vij = V=i U{j},

(2) Vij = Vaij Ui},

(8) Vij = Vaij Ui, j},

(4) Veaij = Vjj U{h € Voyj : {h, j} € EY},

(5) Vaij = Vi U{h € Vyj : {h,i} € E},

(6) Veii = Vij U{h € Veis : {h,j} € E} and

(7) V<<jj = V<<Z'j U {h S V<<jj : {h,l} S E}

Now, we define the sets that our dynamic programming algorithm computes
in order to compute the forest-inducing vertex set of G that has maximum
weight.

Definition 2.4.3 (A-sets). Let ij € X'. Then,
A;j = max A;; = max{X C V;; : G[X] € F}.
w w
Definition 2.4.4 (B-sets). Let ij € X and z € V' \ V;;. Then,
B = max Bjj" = max{X C Vi; : GIX U {x}] € F}.
w w
Observe that, since Voo = {0} and w(0) < 0, Agp = & and, since Vy(,y,, =V,

Arnyn = max,{X C V : G[X] € F}. The following lemmas state how to
recursively compute all A-sets and B-sets other than Agp.

Lemma 2.4.2. Leti €V \ {0} Then Ay = Ay U {’L}

Proof. Let i € V' \ {0}. Then the neighbourhood of i in G[Vj;] is @. Conse-
quently, no subset of Vj; that contains ¢ induces a cycle of G, so i € A;;. By
these facts, Observation 2.4.1(3) and Definition 2.4.3, it follows that

A \ {1} € A<y w(Ay \ {i}) < w(Ay)

= w(A”) = w(A<,~i U {Z}) = A; =AU {Z} ]

Lemma 2.4.3. Leti € V and x € V' \ Vj;.

(1) If {i,x} ¢ E, then BX* = Aj;.
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(2) If {i,x} € E, then BT = B U {i}.

<ii
Proof. Let i € V and x € V' \ Vj;.

(1) Let {i,2} ¢ E. Then i <; z and i <p x, so the neighbourhood of z in
G[V;; U{zx}] is @. Consequently, no subset of V;; U{x} that contains x induces
a cycle of GG. By this fact and Definitions 2.4.3 and 2.4.4, it follows that

B e Ay w(BE) < w(Ay) N
Aji € BE® w(Ai) < w(BjY)
= w(Blgix) = w(Am) = lef = A
(2) Let {i,z} € E. Then the neighbourhood of i in G[V;; U {z}] is {x}.

Consequently, no subset of V;; U {x} that contains ¢ induces a cycle of G, so
i € BE*. By these facts, Observation 2.4.1(3) and Definition 2.4.4, it follows

that ' '
B\ (i} € B2\ w(BF\{i) <w(BZ) |
BZ}, U{i} € Bi® w(BZ}; U {i}) < w(Bj)
= w(Bj") = w(BZ; U{i}) = Bj* = BZj; U{i}. O

Lemma 2.4.4. Let ij € X \Z. Then
Ajj = max {AéijaAéija AL Ui, g} AL {i,j}} :

Proof. Let ij € X \ T.
Let j ¢ Aj;;. By this fact, Observation 2.4.1(1) and Definition 2.4.3, it
follows that
Aij € Azij } _ wlAy) s w(Azy) } N
Azij € Ay w(Azij) < w(Aiy)

= w(Aij) = w(Azij) = Aij = Azyj.

Let ¢ ¢ A;j. Then one can as above show that A;; = Ag;;.

Let i,j € A;;. By this fact and Observation 2.4.1(3), it follows that (i)
Aij\{i,7} C Voi;. Let h € A;;\{¢,j} such that {h,i},{h,j} € E. Then (h,1, j)
is an induced triangle of G, a contradiction, so either {h,i} ¢ E or {h,j} ¢ E
for all h € Aj; \ {i,j}. Let g,h € A;; \ {4, j} such that {g,j},{h,i} € E. Then

g<ti<th

. = {g,h} € E.
h<bj<bg} tg. )
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Consequently, (g, h,1,j) is an induced square of G, a contradiction, so either
{h,i} ¢ E for all h € A;; \ {i,5} or {h,j} ¢ E for all h € A;; \ {7,7}. By this
fact, (i) and Observations 2.4.1(4)—(5), it follows that either (ii) A;; \ {7,5} C
Vjj or (iii) Ai; \ {4,7} € Vi Assume that (ii) holds. The neighbourhood
of j in G[V;j; U {i,j}] is {i}. Consequently, no subset of V;; U {i,j} that
contains j induces a cycle of G. By this fact, (ii) and Definitions 2.4.3 and
2.4.4, it follows that

Aij \ (i, j} € By, }é w(Aij \ {i,5}) < w(BL;;) }é
By Uig} e Ay |7 w(BL;U{ig}) < wldy)

= w(Ay) = w(B%;; U{i,j}) = Aij = BiL ;U {i, j}.
Assuming that (iii) holds, one can as above show that A;; = Biﬁu u{i,j}. O
Lemma 2.4.5. Letij € X \Z and z € V' \ Vj;.
(1) If {i,x},{j,x} & E, then Bif = Aj;.
(2) If {i,x} € E and {j,x} ¢ E, then

Biy = max { BE, BE, By, U (6} B, Ui}

Zijr <y
(3) If {i,x} ¢ E and {j,x} € E, then
Bif = max { B, B, B, Ui, i), B2, Ui g}

(4) If {i,z}, {j,x} € E, then BZ = max, {Bgfj,Bgfj}.
Proof. Let ij € X \Z and x € V' \ Vj;.

(1) Let {i,z},{j,x} ¢ E. Then i <; j <t  and j <p i <p x, so the
neighbourhood of z in G[V;; U {z}] is @. Consequently, no subset of V;; U {z}
that contains x induces a cycle of G. By this fact and Definitions 2.4.3 and
2.4.4, it follows that

Aij S Bff w(Al-j) < w(ijx)
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(2)—(4) Let {i,z} € E or {j,x} € E.

Let j ¢ Bj’. By this fact, Observation 2.4.1(1) and Definition 2.4.4, it
follows that

e | v v |
BZi; € Bjj w(BZj;) < w(Bjj")
= w(BIY) = w(B) = B = B,

<ig°

Let i,j € BJ*. By this fact and Observation 2.4.1(3), it follows that (i)
BirA\{i, 5} C Vaij.

(2) Let {i,z} € Eand {j,z} ¢ E. Let h € Bf*\{i, j} such that {h, i}, {h,j} €
E. Then (h,i,j) is an induced triangle of G, a contradiction, so either
{h,i} ¢ E or {h,j} ¢ E for all h € B \ {i,j}. Let g,h € B\ {i,j}
such that {g,j},{h,i} € E. Then

Let i ¢ B{". Then one can as above show that B]" = BZ]

g<ti<th

. = {g,h} € E.
h<bj<bg} tg. 1}

Consequently, (g, h,i,j) is an induced square of G, a contradiction, so either
{h,i} & E for all h € B\ {i,j} or {h,j} ¢ E for all h € B\ {i,j}. By this
fact, (i) and Observations 2.4.1(4)—(5), it follows that either (ii) Bj*\ {45} C
Vjjor (ili) Bi"\{i,7} C Vi Assume that (ii) holds. The neighbourhoods of
jand z in G[V;;U{i, j,x}] are {i}. Consequently, no subset of V;;U{i,j, 2}
that contains j and/or x induces a cycle of G. By this fact, (ii) and Definition
2.4.4, it follows that

Bz {i.j) € B, b IS w(Be,)) }
ii . Ze (77 u iy J i -
B j; Ui g} € Bjj By U111 < w(B)

= w(B) = w(BLy; U {i,j}) = B = Bi; U{i.j}
Now, assume that (iii) holds. Let h € BJ* \ {i, j} such that {h,z} € E. Then

h<ti<tj<tl‘
j<bx<bh<bi

}é{h,j}GE.

Consequently, (h, j,4,z) is an induced square of G, a contradiction, so {h,z} ¢
E for all h € BJ¥ \ {i,j}. By this fact, (iii) and Observation 2.4.1(6), it
follows that (iv) Bj* \ {i,j} € Vciz. The neighbourhoods of i and z in
G[Veiz U {i,j,x}] are {j}. Consequently, no subset of Vg, U {i,j,x} that
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compute a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <!¢*
and all predecessors of Definition 2.4.1 according to [26];

for ij in R
if 45 =00
Ago =
else
compute A;; according to Lemmas 2.4.2 and 2.4.4;
end if
forz:=1ton
if x € Vj; then continue;
compute ijx according to Lemmas 2.4.3 and 2.4.5;
end for
end for

return V' \ A ,,;

Figure 2.4: Our dynamic programming algorithm for solving FVS on a per-
mutation graph.

contains ¢ and/or z induces a cycle of G. By this fact, (iv) and Definition
2.4.4, it follows that

B\ {ijy € B, | | wBr\{id) <w(BLy) |
B, Ui} € By 7 w(BL, Ui} < w(Bg)

= w(BE) = w(BY”

<ie Ui 7 = B = BL;, Ui}

(3) Let {i,2} ¢ E and {j,z} € E. Then one can as in (2) show that either
B = B, U {i,j} or B = B2, U{i,j}.

(4) Let {i,z},{j,x} € E. Then (i,j,x) is an induced triangle of G, a
contradiction. O

Theorem 2.4.6. The dynamic programming algorithm shown in Figure 2.4
returns a feedback vertex set of G that has minimum weight in O(nm) time.

Proof. The correctness of the algorithm follows from Lemmas 2.4.2-2.4.5. The
computation of R and all predecessors of Definition 2.4.1 takes O(nm) time
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according to [26]. The computation of a single A-set or B-set takes constant
time. The number of iterations performed is

0 Z<1+Zl> = O(nm).

ijeX eV

Therefore, the total time complexity of the algorithm is O(nm). O
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Chapter 3

Solving SFVS in Polynomial
Time

As we have already mentioned, there is no known polynomial result where
the input is restricted to a graph class regarding SFVS. In this chapter, we
propose our novel dynamic programming algorithms for solving SFVS on in-
terval graphs and permutation graphs in polynomial time. These algorithms
do not find an S-feedback vertex set of the input graph that has minimum
weight directly and return it; they find an S-forest-inducing vertex set of the
input graph that has maximum weight and return the set of all other vertices
instead. Throughout this chapter, we use Fg to denote the collection of all
induced S-forests of the input graph.

3.1 Our Algorithm on Interval Graphs

In this section we propose a novel O(n + m + [) dynamic programming
algorithm for solving SFVS on interval graphs where [ € O(n3) is the number
of induced triangles of the input graph.

We assume that we are given an interval graph G = (V| E) along with
a corresponding collection of closed intervals of R where all endpoints are
distinct, a set S C V and a weight function w : V' — R as input. We extend
w such that if it is called with a set of vertices, then it returns the sum of
their respective weights. Wherever max,, is called in this section, it returns
an arbitrary choice that has maximum weight among all its operands. We add

35
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an isolated dummy vertex that has non-positive weight to G and we add a
dummy interval that has minimum right endpoint to the given collection as
its corresponding interval. We consider vertices of G to be equivalent to their
corresponding intervals and to the integers of {0, 1,...,n} that indicate their
position when sorted in ascending order of their corresponding intervals’ right
endpoints.

For every vertex i of G, we use a(i) and b(i) to denote its corresponding
interval’s left and right endpoint respectively. We consider the two relations
on V that are defined by

for all 7,7 € V. Since all endpoints of the collection’s intervals are distinct, it
is not difficult to show that <; and <, are total orders on V. Wherever min; is
called in this section, it returns the minimum among its operands with respect
to <;; and wherever max, is called in this section, it returns the maximum
among its operands with respect to <,. We define some predecessors with
respect to <, and the V-sets, which correspond to the subproblems that our
dynamic programming algorithm wants to solve.

Definition 3.1.1 (Predecessors). Let i € V' \ {0}. Then

o <i=max,{h €V :h<,i}and
o <i=max,{h €V :h<,iand{h,i} ¢ E}.

Ezample 3.1.1. For the interval graph that has

Al = [1,6], I = [7.8), I =[571017}
I = [3,11), Is — [9 13], I = [12,14]

as a corresponding collection of closed intervals of R, < 6 =5 and < 6 = 3.
Definition 3.1.2 (V-sets). Let i € V. Then V; ={h € V : h <, i}.

Observation 3.1.1. Leti € V\{0} and j € V\V; such that {i,j} € E. Then

(1) Vi =V U{i} and

(2) Vo= V<<j @] {h eV {h,]} S E}
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Now, we define the sets that our dynamic programming algorithm computes
in order to conpute the S-forest-inducing vertex set of G that has maximum
weight.

Definition 3.1.3 (A-sets). Let i € V. Then,
A; = muz}xAi = muz]LX{X CV;:G[X] € Fs}.
Definition 3.1.4 (B-sets). Let i € V and « € V' \ V;. Then,
BY = HluE}LXBf =maxw{X CV;: G[X U{z}] € Fg}.

Definition 3.1.5 (C-sets). Let i € V and x,y € V'\ (V;US) such that z <; y
and {x,y} € E. Then,

CPY = maxC/Y = max{X CV; : G[X U{z,y}] € Fs}.

Observe that, since Vp = {0} and w(0) < 0, Ap = @ and, since V,, =V,
A, = max,{X C V : G[X] € Fg}. The following lemmas state how to
recursively compute all A-sets, B-sets and C-sets other than Ag.

Lemma 3.1.2 (A-sets). Leti € V \ {0}. Then A; = max,, {A<;, BL; U{i}}.

Proof. Let i € V '\ {0}.
Let ¢ ¢ A;. By this fact, Observation 3.1.1(1) and Definition 3.1.3, it follows

that A e A () (A1)
i € A< w(A;) S w(A«;
A€ A; } T w(As) < w(Ay) } -

Let ¢ € A;. By this fact, Observation 3.1.1(1) and Definitions 3.1.3 and
3.1.4, it follows that

Ai\{i} € B, w(Ai\ {i}) <w(BL))
BL,U{i} € 4 } ~ w(BL,U{i}) < w(4,) } -

= w(4;) = w(BiQ- u{i}) = A4, = Bi<i U {i}. U

Lemma 3.1.3 (B-sets). Leti €V and x € V \ V;.

(1) If {i,x} ¢ E, then Bf = A;.
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(2) If {i,x} € E, then

Maxy, Bﬁi,Bgy, U {z}} ,ifieSorxeS

BY — 0,
' max,, { B2, C%¥ U {z’}}, ifi,xd S

where ' = min,{i,z} and y' = min,({i,z} \ {2'}).

Proof. Let i € Vand z € V\ V.

(1) Let {i,x} ¢ E. Then b(i) < a(x), so the neighbourhood of z in G[V; U
{z}] is @. Consequently, no subset of V; U {z} that contains x induces an
S-cycle of G. By this fact and Definitions 3.1.3 and 3.1.4, it follows that

Bf € A } w(Bf) < w(4;) }
A; € BY w(A;) < w(BY)

= w(B?) = w(4;) = B® = A,

(2) Let {i,z} € E.
Let i ¢ BF. By this fact, Observation 3.1.1(1) and Definition 3.1.4, it follows
that
Bre B\ w(B)<w(BL) )|
BZ; e Bf w(BZ;) < w(By)
= w(Bf) = w(B;) = Bf = BZ;.
Let i € BY. By this fact and Observation 3.1.1(1), it follows that (i) BY \
{i} C V.;. We define 2/ = min;{i, 2} and v’ = min;({i,x} \ {2}).
Case 1: Let i € Sor x € S. Let h € BY \ {i} such that {h,y'} € E. Then

a(z') < a(y’) < b(h) <b(x'),by') = {h,2'} € E.

Consequently, (h,z’,y’) is an induced S-triangle of G, a contradiction, so
{h,y'} ¢ E for all h € BY \ {i}. By this fact, (i) and Observation 3.1.1(2), it
follows that (ii) B \ {i} € V. The neighbourhood of ¢/ in GV, U{z’,y'}]
is {z'}. Consequently, no subset of Vie,y U {2/, '} that contains 3’ induces an
S-cycle of G. By this fact, (ii) and Definition 3.1.4, it follows that

By \ (i} € B, }:, w(BY\ {i}) < w(BL,) }:,

BY,, U{i} € B w(BZ,, U{i}) < w(BY)
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= w(B) = w(B%,, U{i}) = B = BL,, U {i}.
Case 2: Let i,x ¢ S. By (i) and Definitions 3.1.4 and 3.1.5, it follows that

Be\{iyecZ? | _ w(BI\ i} w(Ei¥) | _
ctY Ui} e B w(CZY U {i}) < w(BY)

= w(BY) = w(C%Y U {i}) = Bf = C%Y U {i}. O

Lemma 3.1.4 (C-sets). Leti € V and z,y € V \ (V; US) such that © <4 y
and {z,y} € E.

(1) If {i,y} ¢ E, then C"Y = BF.

(2) If {i,y} € E, then C*¥ = o< . Jifi€s
Y ) i maxw{Cﬁ’Zy,Ciivy U{i}},ifi¢s

where ' = min{i, x,y} and y' = min;({i, z,y} \ {2'}).

Proof. Let i € V and z,y € V' \ (V; U S) such that z <, y and {z,y} € E.

(1) Let {i,y} ¢ E. Then b(i),a(z) < a(y) < b(x), so the neighbourhood of
y in G[V; U{x,y}] is {z}. Consequently, no subset of V; U{z,y} that contains
y induces an S-cycle of G. By this fact and Definitions 3.1.4 and 3.1.5, it

follows that
Cive B\ w(CiY) <w(BY) | _
By eC” w(B}) < w(CY)

= w(CY) =w(B}) = CY = BY.

(2) Let {i,y} € E. Then a(z) < a(y) < b(i) < b(z),b(y), so (i,z,y) is an
induced triangle of G.

Let ¢ ¢ C"Y. By this fact, Observation 3.1.1(1) and Definition 3.1.5, it

follows that
cHvecy! N w(CHY) < w(CZY) N
ol e w(C) < w(CPY)
= w(CY) =w(CL)) = CMY =2
Let ¢ € C"Y. By this fact and Observation 3.1.1(1), it follows that (i)

CiY\{i} C Vai. We define o’ = min {4, z,y}, y' = miny({i,z,y} \ {2'}) and
2 = ming ({3, z,y} \ {2/, 9y'}).
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Case 1: Let i € S. Then (i, x, y) is an induced S-triangle of G, a contradiction.

Case 2: Let i ¢ S. We will show that if a subset of V; U {a/,¢/, 2’} that
contains 2’ induces an S-cycle of GG, then its non-empty intersection with V;
is not a subset of C;" V.

e Let v1,vy € Vo U{a/, 9/} such that (vq,v,2’) is an induced S-triangle
of G. Since 2.y, 2" ¢ S, without loss of generality, assume that v; € S
= vy € V;. Then

a(z’) < a(y') < a(z’) < blvy) < b(@),b(y),b(z") = {v1,2'},{v1,y'} € E.
Consequently, (v1,2’,y’) is an induced S-triangle of G, so v; ¢ Cf/’y/.

Therefore, if a subset of V; U{2’, 9/, 2’} that contains 2’ induces an S-cycle of

G, then its non-empty intersection with V.; is not a subset of C} £ By this
fact, (i) and Definition 3.1.5, it follows that

CZ:?J /\ {i} € Czif N w(CZi:y ,\ {i}) < w(cil;y ) N
Ot Ll e w(CZY U {i}) <w(CPY)

= w(C™) = w(C%Y U {i}) = C™Y = C%¥ U {i}. O

Theorem 3.1.5. The dynamic programming algorithm shown in Figure 3.1
computes an S-feedback vertex set of G that has minimum weight in O(n +m + 1)
time where [ € O(n3) is the number of induced triangles of G.

Proof. The correctness of the algorithm follows from Lemmas 3.1.2-3.1.4. The
computation of a single predecessor, A-set, B-set or C-set takes constant time.
The number of iterations performed is

o> 11+ > |1+ > 1 =0(n+m+1).

eV €N (%) yEN()NN(x)

Therefore, the total time complexity of the algorithm is O(n +m +1). O
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compute a list £ containing all vertices of V'
sorted in descending order with respect to <; and
a list R containing all vertices of V
sorted in ascending order with respect to <,;

Ay = T,
Bé =
if {1,2} € E then Cy” := @;

for ¢ in R starting from i :=1
compute < ¢ and < ¢ of Definition 3.1.1;
compute A; according to Lemma 3.1.2;
for x in reverse L starting from z ;=
if x =i then continue;
compute BY according to Lemma 3.1.3;
for y in reverse L starting from y :=
if y = x then continue;
if {z,y} € E then compute C;"Y according to Lemma 3.1.4;
if {i,y} ¢ FE then break;
end for
if {i,z} ¢ E then break;
end for
end for

return V \ A,;

Figure 3.1: Our dynamic programming algorithm for solving SFVS on an
interval graph.
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3.2 Our Algorithm on Permutation Graphs

In this section we propose a novel O(m?) dynamic programming algorithm
for solving SF'VS on permutation graphs.

We assume that we are given a connected permutation graph G = (V, F)
along with a corresponding permutation 7 of G, a set S C V and a weight
function w : V' — R as input. As any vertex that has non-positive weight
would be automatically included in an S-feedback vertex set that has minimum
weight, we may also assume that all vertices have positive weight. We extend
w such that if it is called with a set of vertices, then it returns the sum of
their respective weights. Wherever max,, is called in this section, it returns an
arbitrary choice that has maximum weight among all its operands. We add an
isolated dummy vertex that has non-positive weight to G and we add 0 +— 0
to 7 as its first column where 0 is its corresponding integer. We consider the
vertices of G to be equivalent to their corresponding integers in 7’s domain.

We consider the two relations on V' defined by

for all 7,5 € V. It is not difficult to show that both <; and <, are total orders
on V; they are exactly the orders in which the integers appear on the top and
bottom row of 7 respectively.

Our dynamic programming algorithm iterates on ordered crossing vertex
pairs. We define the following collections of ordered crossing vertex pairs:

X={ijeV?:i<;jand j <,i}
I={ijeV?:ii=jlcX

Observe that for every ij € X, if i # j, then {i,j} € E. We consider the two
relations on X defined by

gh<,ij <= g<piandh<;j
gh<lrij < g<piorg=iandh<;j

for all gh,ij € X as well as the two relations on X defined by

ry < Zw — z<zandy < w
xyéﬁ“zw — x<;zorx=zandy<,w
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for all zy, zw € X. It is not difficult to show that <; and <,. are partial orders
on X, which we call the left-endpoints and right-endpoints product order
respectively, whereas Sfe”’ and Sff"‘” are total orders on X', which we call the
left-endpoints and right-endpoints lexicographic order respectively. We
also note that S%em and Siex are linear extentions of <; and <, respectively.
Wherever min; is called in this section, it returns the minimum among its
operands with respect to <;; and wherever max, is called in this section, it
returns the maximum among its operands with respect to <,. We define
some predecessors with respect to <, and the V-sets, which correspond to the
subproblems that our dynamic programming algorithm wants to solve.

Definition 3.2.1 (Predecessors). Let ij € X'\ {00}. Then

< ij = max,{gh € C : gh <, ij and h # j},
e <ij=max,{gh €C:gh<,ij and g # i},
e <ij=max{gh€C:gh<,ijand g#1and h # j},
o < ij =max,{gh €C:gh<,1ijand {g,i},{g,5},{h,i},{h,j} ¢ E} and
o <ij < zx=max{gh € C:gh<,ijand {h,z},{g,2} ¢ E}.

Ezample 3.2.1. For the permutation graph that has
(1 345 6 7 8
T™“\286 31745

as a corresponding permutation of {1,2,3,4,5,6,7,8}, € 57 = 56, < 57 = 47,

< 57 =46, € 57 =13 and € 36, < 36, < 36, < 36, < 36 < 88,< 57 < 88 =
22.

oo N

Definition 3.2.2 (V-sets). Let ij € X. Then V;; = {h € V : hh <, ij}.
Observation 3.2.1. Letij € X and x € V' \ Vj;. Then

(1) Vij = V=i U{j},

(2) Vij = Vaij Ui},

(8) Vij = Vaij Ui, j},

(4) Veij = Vjj U{h € Vij : {h, j} € E},
(5) V<ij = Veia U{h € Vyj : {h,i} € EY},
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(6) V<ii = Vij U{h € Vi 2 {h, j} € E},
(7) V<<jj = V<<ij U {h € V<<jj : {h,l} S E} and

(8) V<Z'j = V<Z'j<<xx U {h S V<ij : {h,:E} (S E}

Now, we define the sets that our dynamic programming algorithm computes
in order to compute the S-forest-inducing vertex set of G that has maximum
weight.

Definition 3.2.3 (A-sets). Let ij € X'. Then,
Ajj = mleLXAZ-j = mlzuxx{X C Vi : GIX] € Fs}.
Definition 3.2.4 (B-sets). Let ij € X and € V' \ V;;. Then,
B = mngfjx = mgx{X C Vi GIX U{x}] € Fs}.

Definition 3.2.5 (B-sets). Let ij € X and zy € X \ Z such that j <; y,
i <pxand z,y ¢ S. Then,

Bgij — mngny = mgx{X CVij: GIX U{z,y}] € Fs}.

Definition 3.2.6 (C-sets). Let ij € X, xy € X\ Z and z € V' \ Vj; such that
xy < 2z, v,y # z, {x,z} € EV{y,z} € E, j <ty, 1 <p x and x,y,z ¢ S.
Then,

C«Z?ij,zz _ mgxcgﬁjy’zz = mlzuxx{X C Vi : GIX U{x,y,z2}]| € Fs}.

Definition 3.2.7 (C-sets). Let ij € X and zy, zw € X'\ Z such that zy <; zw,
x,y # z,w, {z,w},{y,z} € E, j <t y,w, i <px,zand x,y,z,w ¢ S. Then,

Ci™ = mgxcij’zw = mgx{X CVij: GIX U{x,y,z,w}] € Fg}.

Observe that, since Voo = {0} and w(0) < 0, Agp = @ and, since Vy(,y,, =V,
Arnyn = max,{X C V : G[X] € Fs}. The following lemmas state how to
recursively compute all A-sets, B-sets, and C-sets other than Agg.

Lemma 3.2.2. Leti € V \ {0}. Then A; = Ay U {i}.
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Proof. Let i € V' \ {0}. Then the neighbourhood of ¢ in G[V;] is @. Conse-
quently, no subset of Vj; that contains i induces an S-cycle of G, so i € Aj.
By these facts, Observation 3.2.1(3) and Definition 3.2.3, it follows that

A\ {i} € Az w( A \ {i}) < w(A<i)
Acii U{i} € Aii } 7 w(Aci U Li}) < w(dy) } ~

Lemma 3.2.3. Leti € V and x € V' \ Vj;.
(1) If {i,x} ¢ E, then BE* = Aj;.
(2) If {i,x} € E, then BE* = B, U {i}.

Proof. Let i € V and z € V' \ {V;}.

(1) Let {i,2} ¢ E. Then i <; z and i <p x, so the neighbourhood of z in
G[V;; U{zx}] is @. Consequently, no subset of V;; U{x} that contains x induces
an S-cycle of GG. By this fact and Definitions 3.2.3 and 3.2.4, it follows that

Bt € Ay w(BE*) < w(Ai;) N
Ay € BE? w(A;) < w(BE)

= w(Bj") = w(Ay) = Bji® = Aj.

(2) Let {i,z} € E. Then the neighbourhood of i in G[V;; U {z}] is {x}.
Consequently, no subset of V;; U {z} that contains ¢ induces an S-cycle of G,
so i € BY*. By these facts, Observation 3.2.1(3) and Definition 3.2.4, it follows

that
BT\ {i} € BZ, w(BE"\ {i}) < w(BZ)
B U {i} € B } = w(B™, U {i}) < w(BE) };‘

<ii <ii
= w(Bjj") = w(BZj; U{i}) = Bjj" = B U {i}. O

Lemma 3.2.4. Leti € V and xy € X\Z such thati <, y, i <p x andx,y ¢ S.

(1) If {i,y} ¢ E, then B! = B:*.
(2) If {i,z} ¢ E, then B;’ = BYY.

. . B, ifie S
3) If {i,x}, {i,y} € E, th B?y:{ S Sl
(3) 17 {6, 2}, (i y} en D B<zi U{i},ifi ¢ S.
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Proof. Let i € V and xy € X \ Z such that i <; y, i <p z and z,y ¢ S.

(1) Let {i,y} ¢ E. Then i,z <; y and i <p y <p x, so the neighbourhood of
y in G[V;;U{x,y}] is {z}. Consequently, no subset of V;; U{x,y} that contains
y induces an S-cycle of G. By this fact and Definitions 3.2.4 and 3.2.5, it

follows that
BY e By | | w(BY) <w(BE) | _
B e BY |7 w(BE) <w(BY)
= w(B}) = w(B}") = B}’ = B}".

(23

(2) Let {i,z} ¢ E. Then one can as in (1) show that B}Y = BYY.

(3) Let {i,z},{i,y} € E. Then z <4 i <; y and y <p @ <p =, so the
neighbourhood of i in G[X U {z,y}] is {x,y}.

Case 1: Let i € S. Then (i,z,y) is an induced S-triangle of G, so i ¢ B;".
By this fact, Observation 3.2.1(3) and Definition 3.2.5, it follows that

mres )L wE S |

Bz € B! w(BZ;) < w(B)

= w(By") = w(BZ,;) = By’ = BZ;.
Case 2: Let i ¢ S. We will show that no subset of Vj; U {z,y} that contains
7 induces an S-cycle of G.

e Let v1,v9 € Vyy U {z,y} such that (v, v9,4) is an induced S-triangle of
G. Then {v1,v2} = {x,y}, a contradiction, because i, x,y ¢ S.

o Let vy, v9,v3 € VyyU{x,y} such that (vy,va,vs3,1) is an induced S-square
of G. Then {vy,v3} = {z,y}, a contradiction, because {z,y} € F.

Therefore, no subset of V;; U{x,y} that contains 7 induces an S-cycle of G, so
i € B;Y. By these facts, Observation 3.2.1(3) and Definition 3.2.5, it follows

that
BN} € B\ | w(BEP\{i)) <w(BY) |
B?Z’ Ui} € Bfiy w(B?’i’- u{i}) < w(Bfiy)

7 {2

= w(B}Y) = w(B

20y = BY = BY

<

U {4} O

Lemma 3.2.5. Leti € V, vy € X\ T and z € V \ Vj; such that xy <; 2z,
x,y#z,{x,z} e EV{y,z} € E,i<;y,i<px and z,y,z ¢ S.
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(1) If {i,z} ¢ E, then C;;»** = B;Y.

. CrY# ifieS
TY,2Z __ <ii )
(2) If {i,z} € E, then C;;)""" = { ngézz Ulihifid s,

Proof. Let i € V, zy € X\ T and z € V \ Vj; such that zy <; 2z, z,y # 2,
{z,2} e EV{y,z2} € E, i< y,i<pzand z,y,2 ¢ S.

(1) Let {i,z} ¢ E. Then T <2 }or hE <2<y }, so the
i,y <pz<px i,y <px,z

neighbourhood of z in G[V;;U{z,y, z}| is a subset of {z,y}. We will show that
no subset of Vj; U {z,y, z} that contains z induces an S-cycle of G.

o Let v1,ve € Vi; U{x,y} such that (vi,ve,2) is an induced S-triangle of
G. Then {v1,v2} = {z,y}, a contradiction, because z,y,z ¢ S.

o Let vy, v9,v3 € V;;U{z,y} such that (vy, vy, v3, 2) is an induced S-square
of G. Then {vy,v3} = {z,y}, a contradiction, because {z,y} € E.

Therefore, no subset of Vj; U{z,y, z} that contains z induces an S-cycle of G.
By this fact and Definitions 3.2.5 and 3.2.6, it follows that

Covt e B\ w(CE ) <w(BE) |
B ¢ iV w(BY) < w(CP)

= w(CyV) =w(B;Y) = CV** = BY.
(2) Let {4, 2} € E. Then either hT <Y 2 } or TStESit<ty },
Y<pz<pt<p<T ,Y <p T,z
so (i) the neighbourhood of i in G[Vj; U{z,y, z}] is a superset of {y, z} or (ii)
it is a superset of {z, z}.

Case 1: Let i € S. We will show that i ¢ C;"**. Let ¢ € C;,"**. Assume
that (i) holds.

o If {y,z} € E, then (i,y, z) is an induced S-triangle of S, a contradiction.

o If{y,z} ¢ E, then (i,y, z, z) is an induced S-square of S, a contradiction.

Likewise, assuming that (ii) holds. Therefore, i ¢ C;*"**. By this fact, Obser-

7

vation 3.2.1 and Definition and 3.2.6, it follows that

TY,22 TY,22 TY,22 TY,22
Ci el }:> w(Cy" ™) < w(CZ; )}:>

cheecii= 7 w(el) < w(cl)
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w(Cy®7) = w(CT) = CF™ = CZ57.
Case 2: Let i ¢ S. We will show that if a subset of V;; U{x,y, z} that contains

7 induces an S-cycle of GG, then its non-empty intersection with V.;; is not a
subset of C};V**.

e Let vy,v9 € Vi U{x,y, 2z} such that (vi,ve,4) is an induced S-triangle
of G. Then {v1,v2} C {x,y, 2}, a contradiction, because i,z,y,z ¢ S.

o Let v1,vg,v3 € Vi U {x,y, 2} such that (vi,ve,vs,7) is an induced S-
square of G. Then {vy,v3} C {z,y,2} and, since i,z,y,2 ¢ S, vo € S =
vy € Vy;.

— Assuming that {v1,v3} = {x,y} yields a contradiction, because
{z,y} € E.

— Assume that {vi,vs3} = {y, z}. If {y,z} € E, this yields a contra-
diction. If {y,z} ¢ E, then (y, v, z,z) is an induced S-square of
G, s0 vy ¢ CV7.

— Likewise, assuming that {vi,vs3} = {z, z}.

Therefore, if a subset of Vj; U {x,y, z} that contains ¢ induces an S-cycle of
G, then its non-empty intersection with Vo; is not a subset of C}Y**, so
i € C;V°%. By these facts, Observation 3.2.1(3) and Definition 3.2.6, it follows

that

CIV#\ {i} € CT* }: w( “”\{z})éS w(C™) }:,

Co Uiy eGP [T wl(CB u i) < w(ch)
= w(C*7) = w(C* U {i}) = CIP% = C2077 U {4}, O

Lemma 3.2.6. Leti € V and xy, zw € X' \Z such that xy <; zw, z,y # z,w,
{z,w}{y,z} € E, i <t y,w, 1 <p x,z and z,y,z,w ¢ S.

(1) If {i,w} ¢ E, then C;"*" = C;V**.
(2) If {i,z} ¢ E, then C{P*" = CZV",

, , o= ifiesS
TY,2W __ <11 I
(3) If {i,z},{i,w} € E, then C;;”"" = { CEE0 U () if i ¢ S.
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Proof. Let i € V and zy,zw € X \ Z such that zy <; 2w, =,y # z,w,
{w,w},{y,z}EE,i<t vaai<bx72and ZL‘,y,Z,’lU%S.

(1) Let {i,w} ¢ E. Then i,z <4 y, z,w, z <; w, w <p z and i,y <p T, z, W,
so the neighbourhood of w in G[Vj; U {x,y, z,w}] is a subset of {z,y, z}. We
will show that if a subset of V;;U{x, y, z, w} that contains w induces an S-cycle
of G, then its non-empty intersection with Vj; is not a subset of any X € C;;V"**

e Let vi,v9 € Vj; U{x,y, 2z} such that (vi,ve,w) is an induced S-triangle
of G. Then {vy,v2} C {z,y, 2}, a contradiction, because z,y, z,w ¢ S.

e Let vy,v9,v3 € Vj; U{x,y,z} such that (vq,vs,v3,w) is an induced S-
square of G. Then {vi,v3} C {z,y,2} and, since x,y,z,w ¢ S, vo € S
= vy € V.

— Assuming that {v1,v3} = {z,y} or {y,z} yields a contradiction,
because {z,y},{y,z} € E.

— Assume that {v1,v3} = {z,z}. If {z,2} € E, this yields a contra-
diction. If {x,z} ¢ E, then (x, vy, z,y) is an induced S-square of
G, so vy ¢ CV7°.

Therefore, if a subset of Vj; U {z,y, z,w} that contains w induces an S-cycle
of G, then its non-empty intersection with Vj; is not a subset of C;;"**. By
this fact and Definitions 3.2.6 and 3.2.7, it follows that

Czy JZW c Ca:y,zz } w(cﬁy,zw) < w(czy ZZ) }
= =

1
Cacy 22 Ca:y ,ZW U)(Cfl-y’ZZ> < w<szzy zw)

= w(Cmy zw) _ w(czy zz) - Cmy AW EYZ

(22

(2) Let {i,z} ¢ E. Then one can as in (1) show that C;"*" = C7V"".

(3) Let {7, z},{i,w} € E. Thenx <; 2 <; i <z y,wand y <p w <p i <p , 2,
so the neighbourhood of i in G[V;; U{z,y, z,w}] is {z,y, z,w}.

Case 1: Let i € S. Then (i,z,y) is an S-triangle of G, so i ¢ C;"*". By this
fact, Observation 3.2.1 and Definition 3.2.7, it follows that

Czﬂiy,zw c C?Z/;zw N w(cﬂcy zw) < w(C:cgiZzw) N
Oz?i;zw c ny ,RW w(ci@;lzw) < w(cfﬂy Zw)
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Case 2: Let ¢ ¢ S. We will show that if a subset of Vj; U {x,y, z,w} that
contains ¢ induces an S-cycle of G, then its non-empty intersection with V_;
is not a subset of C.V*".

o Let vy, v € VyyU{x,y, z,w} such that (v, ve, i) is an induced S-triangle
of G. Then {v1,v2} C {x,y, z,w}, a contradiction, because i, x,y, z, w ¢

S.

o Let v1,v9,v3 € Vejy U{x,y,z,w} such that (vi,ve,vs,4) is an induced
S-square of G. Then {v1,v3} C {x,y, 2z, w} and, since i,z,y,z,w ¢ S,
vy €8 = vy € V.

— Assuming that {v1,v3} = {z,y}, {y, 2}, {z,w} or {w,zx} yields a
contradiction, because {z,y},{y, z}, {z, w}, {w,z} € E.

— Assume that {vi,v3} = {z,2}. If {z,z} € E, this yields a contra-
diction. If {x,z} ¢ E, then (z,v9, z,y) is an induced S-square of
G, s0 vy ¢ CIV7Y.

— Likewise, assuming that {vi,v3} = {y, w}.

Therefore, if a subset of Vj; U {x,y, z,w} that contains ¢ induces an S-cycle
of G, then its non-empty intersection with V.;; is not a subset of C."*", so
i € C*". By these facts, Observation 3.2.1(3) and Definition 3.2.7, it follows

that

O™\ {i} € Cou® }_? w(Ci ™\ {i})

Cigljlzw U{ } c ny,zw

<w(CZ™)
w(CHE U {i}) < w(CH) }ﬁ’

= w(CTHY) = w(CTF U {i}) = CE50 = CH5 | (4}, O

Lemma 3.2.7. Let ij € X \Z. Then

maxsy, {AZZ]5A<’L]7 <<]] U {i, it B<<“ U {7’7]}}5
ifieSorjes

maxy, {A@‘j, Acij, BZ;; UL, J}}
ifi,j¢s.

Proof. Let ij € X\ Z.
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Let j ¢ Aj;;. By this fact, Observation 3.2.1(1) and Definition 3.2.3, it

follows that
Aij S .A@'j } - w(Aij) <w A@j) } =
A@'j S .Aij w(AZij) < w(Aij)

= w(Aij) = w(Azij) = Aij = Azij.

Let ¢ ¢ A;j. Then one can as above show that A;; = Agj.

Let 4,5 € A;;. By this fact and Observation 3.2.1(3), it follows that (i)
Aij \{i,j} € Veij-
Case 1: Let i € Sor j € S. Let h € Aj; \ {7,7} such that {h,i},{h,j} € E.
Then (h, 1, j) is an induced S-triangle of G, a contradiction, so either {h,i} ¢
E or {h,j} ¢ E for all h € A;; \ {i,j}. Let g,h € A;; \ {i,7} such that
{9,7},{h,i} € E. Then

g<ti<th

. ={g,h} € E.
h<b]<bg} lg.}

Consequently, (g, h, 1, j) is an induced S-square of G, a contradiction, so either
{h,i} ¢ E for all h € A;; \ {i,5} or {h,j} ¢ E for all h € A;; \ {¢,7}. By this
fact and Observations 3.2.1(4)—(5), it follows that either (ii) A;; \{i,7} € Vjj
or (iii) As; \ {4, 5} € Vyi. Assume that (ii) holds. The neighbourhood of j in
G[V;j U{i,j}] is {i}. Consequently, no subset of Vi ;; U {i,j} that contains
j induces an S-cycle of G. By this fact, (ii) and Definitions 3.2.3 and 3.2.4, it
follows that

Ay \{i,j} € BL; } _ wldig\{ig}) < w(BL;;) } N
B ;Ui j} € Ajj w(Bg;; Ui, j}) < w(Ay)
= w(Aij) = w(B%,; U {i,j}) = Aij = BL;; U{i,j}.
Assuming that (iii) holds, one can as above show that A;; = BZ“ u{i,j}.
Case 2: Let i,j ¢ S. By (i), Observation 3.2.1(3) and Definitions 3.2.3 and
3.2.5, it follows that

A\ {i,j} € B2, _ w(dy \{ig}) < w(BY,) _
B2y i} € Ay w(BZ;; U{i,j}) < w(Ay)

= w(Aij) = w(Bij

J Ui, g}) = Ay = BY, Ui, j}. O

Lemma 3.2.8. Letij € X \T andx € V \ V.
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(1) If {i,z},{j,z} ¢ E, then BiE = Ajj.
(2) If {i,z} € E and {j,x} ¢ E, then

mas, { B, B2, B Ui, ), B, 00,5}
ifieSorjes

Blmm — maXay {Béf]’ Bzgijj’ BZ<JZJ<<:E£ U {17]}} )
! ifi,j¢ S andz e S

Ina&v{Bxx B ny@%/u{@j}},

Zigr Ty U<y

ifi,5,x ¢ S

(3) If {i,x} ¢ E and {j,x} € E, then

( s . . 17 . .
mas, { B2, B2, Bl Ui, 5}, B, Ui g} )
ifieSorjes

pee = ma&u{Bé%,Bé%,BgM<MEU{Lj}},
! ifi,j¢ S andx € S

ma&U{BﬁrABII Ofﬁ@%'u{@j}},

<ijr P<igr U <ij

ifi,5,x ¢ S

(4) If {i,z},{j,x} € E, then

S/ AN
ifireSorjeSorxzeS

wax, {822, 52,),

Tr __

Zijr P<ijr Ui

ifi,jx ¢S

Immw{Bm ercf“”u{gn},

In all cases

° x/y/ = minl{uv eX \I U,V € {Z,],.’L’}} and

o 22 =minf{uu € :ue {i,jz}\{z,v}}
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Proof. Let ij € X \Z and x € V' \ Vj;.

(1) Let {i,z},{j,z} ¢ E. Then i <; j <; = and j <p @ <p z, so the
neighbourhood of x in G[V;; U {z}] is @. Consequently, no subset of V;; U {z}
that contains = induces an S-cycle of G. By this fact and Definitions 3.2.3
and 3.2.4, it follows that

Aij S Bff w(Aij) < w(BZI)

(2)—(4) Let {i,z} € F or {j,z} € E.
Let j ¢ Bj’. By this fact, Observation 3.2.1(1) and Definition 3.2.4, it

follows that
D eu | o S )

Bt € By w(BE,) < w(BE)
= w(BY) = w(BY,) = B = B,

Let i ¢ B". Then one can as above show that BJY = BZY,.

Let 4,j € Bj*. By this fact and Observation 3.2.1(3), it follows that (i)
B \ {7,7} C V<ij. We define the following ordered crossing vertex pairs:

° LU/y, = minl{UU cX \I U,V € {Z,j,$}} and

o 22 =minf{uu e :ue{ijz}\{z,y}}

(2) Let {i,z} € E and {j,z} ¢ E.

Case 1: Let i € Sorj € S. Let h € Bi \ {i,j} such that {h,i}, {h,j} € E.
Then (h, i, j) is an induced S-triangle of G, a contradiction, so either {h,i} ¢ E
or {h,j} ¢ E for all h € B\ {i,j}. Let g,h € Bj \ {i,j} such that
{g9,7},{h,i} € E. Then

g<ii<¢h

. = {g,h} € E.
h<bj<bg} tg:h}

Consequently, (g, h, 1, j) is an induced S-square of G, a contradiction, so either
{h,i} & E for all h € Bf*\{i,j} or {h,j} ¢ E for all h € B\ {i,j}. By this
fact, (i) and Observations 3.2.1(4)—(5), it follows that either (ii) B\ {i,j} C
Vjjor (iii) Bi\{i,j} C Vi Assume that (ii) holds. The neighbourhoods of
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j and z in G[V;;U{1, j,x}] are {i}. Consequently, no subset of V;;U{i, j, z}
that contains j and/or = induces an S-cycle of G. By this fact, (ii) and
Definition 3.2.4, it follows that

BE\ (i) € B, \ _ w(BE\ {ig)) < w(BL,)
BZ<Z<JJ U{i,j} € Em } - (BZ<Z<]J U{i,j}) < w(gm) } -

= w(B{) = w(B%;; U{i,j}) = Bj = BZ;; U{i,j}

Now, assume that (iii) holds. Let h € Bji* \ {i,j} such that {h,z} € E. Then

h<ig1<;j<gx .

j<pr<ph<pt }j{h’j}EE'

Consequently, (h,7j,i,z) is an induced S-square of G, a contradiction, so
{h,z} ¢ E for all h € B \ {i,j}. By this fact, (iii) and Observation 3.2.1(6),
it follows that (iv) Bm \ {i,j} C V«iz. The neighbourhoods of i and z in
GV«iz U {i,j,x}] are {j} Consequently, no subset of Vi, U {i,7,z} that
contains ¢ and/or x induces an S-cycle of G. By this fact, (iv) and Definition
3.2.4, it follows that

B\ {iy € B, | | wBE\ (b <w(BL,) |
B, Uiy e B [T w(BL, UG5 < w(BE)

w(Bf) = w(BY,, u{i,j}) = Bff = BZ, U{i,j}

Case 2: Let i,j ¢ S and x € S. Let h € BJ* \ {i,j} such that {h,z} € E.
Then
hot <¢ 3 <tx
J<px<ph<pi

}:>{h,j}eE.

Consequently, if {h,i} € E, then (h,i,7) is an induced S-triangle of G, a
contradiction, and if {h,i} ¢ E, then (h, j,i,x) is an induced S-square of G,
also a contradiction, so {h,z} ¢ E for all h € B \ {4,j}. By this fact, (i)
and Observation 3.2.1(8), it follows that

BZ<JZ]<<:vx U {Z?J} € Bz] (BZ<]13<<:E33 U {Z ]}) S w(B:Z‘jx)

B \{i,j} € B<Z]<<mc } N (Bém \{i,7}) <w(B <Z]<<xz) } N

'UJ(B,Z}I‘) = ( <z]<<xx U {l ]}) = B’Z:]I‘ = Z<jz]<<xx U {1’ j}
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Case 3: Let i,j,2 ¢ S. By (i) and Definitions 3.2.4 and 3.2.6, it follows that

Bg‘;i”/\;{z’/,j} S N w(ij/m/\:{i/,j}) <w(BLY7)
Bzz@; #E Ui, g} € Bgﬁjx w(Bziyj U L)) < w(BngI)

= w(Bj}") = w(Bi% TP Ui g)) = B = Bi% “E Ui, g}

(3) Let {i,2} ¢ E and {j,x} € E. Then one can as above show the following;:

e Ifi € Sorje€ S, then either Bff' = Bixju{i,j} or Bl = Biziiu{i,j}.

o If z €5, then B} = Bijij<<m U {i, s}

i If Z.,j,fﬁ ¢ S, then BZZ‘ — Biiijzz )

(4) Let {i,z},{j,z} € E.
Case 1: Let i € Sor j € Sorz € S. Then (i,j,x) is an induced S-triangle
of GG, a contradiction.

Case 2: Let i,j,x ¢ S. By (i) and Definitions 3.2.4 and 3.2.6, it follows that

B\ {i g} € Bl (1) < w(B2 )
'y 2z .. 2’y 2z ..
BZj 77 Ulijt e B w(BZJ"7 Ui, j}) < w(Bf)
= w(BE) = w(BLY "7 U{i,j}) = BE = BEY" 2 Ui, ). O

Lemma 3.2.9. Let ij,xy € X \ Z such that j <;y, i <p x and x,y ¢ S.

] ] Ty _ pyy
(2) If {i,z},{j,x} ¢ E, then B =By

(3) If {i,y},{j,x} € E, then

(
max, {ng,ng},
ifieSorjes

Ty __
Bi] N /1,0 Y
maxy, {B‘”y B VYA {i,j}},

zijr P<ijr Ui
( ifi,j¢S

where
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o 'y = miny{uv € X\ Z :u,v € {i,j,z,y}} and
o 2w =min{uv € X\ Z:u,ve {i,jz,yt\{2,v}}.

Proof. Let ij,zy € X \ Z such that j <;y, i <p v and z,y ¢ S.

(1) Let {i,y} ¢ E. Then i <; j, j,x <¢ y and j <p @ <p y <p @, SO
the neighbourhood of y in G[V;; U {z,y}] is {}. Consequently, no subset of
VijU{z, y} that contains y induces an S-cycle of G. By this fact and Definitions
3.2.4 and 3.2.5, it follows that

B e BiY } w(B;Y)

7)< w(BE)
TT LY BT < (BQUy) =
Bij" € B;; w(Bj") < w(By;

= w(ijy) = w(B]") = ijy = B/

; : Ty _ pyy
(2) Let {j,z} ¢ E. Then one can as in (1) show that B;}’ = B/Y.

(3) Let {4,y},{j,z} € E.

Let j ¢ B;/. By this fact, Observation 3.2.1(1) and Definition 3.2.5, it
follows that

B;zz € B%Z } w(BZ;?;) < w(B%]/.) } N
BZi; € B; w(BZ;;) < w(B;))

— w(BY) = w(B) = B = BY..

Let i ¢ B;. Then one can as above show that B = BZ];.
Let i,j € B;. By this fact and Observation 3.2.1(3), it follows that (i)
B/ \ i, j} € Vaij.
Case 1: Lett € SorjeS.
o If {i,x} € E, then (i, z,y) is an induced S-triangle of G, a contradiction.
e If {j,y} € F, then (j,z,y) is an induced S-triangle of G, a contradiction.

o If {i,z},{j,y} ¢ E, then (i, j,x,y) is an induced S-square of G, a con-
tradiction.

Case 2: Let i,j ¢ S. We define the following ordered crossing vertex pairs:

o 2y = ming{uv € X\ Z:u,v € {i,j,x,y}} and
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o 2w =min{uv € X\ Z:u,ve{i,jz,y}t\{2",v}}.
By (i) and Definitions 3.2.5 and 3.2.7, it follows that

B\ {i,j} € CZ57" }j (Bxy\{zy}><w<cigw> }:
w

Ci{z . U{i g} e ijy Cif; U {i,i}) < w(Bijy)

= w(BY) = w(CZY " U{i,j}) = BY = CZ17 Ui, ). 0

Lemma 3.2.10. Let ij,ay € X \Z and z € V \ Vi such that xy <; 2z,
z,y# 2z, {r,2} e EV{y,2} €E, j<ty,i<px and x,y,z ¢ S.

(1) If {i, 2}, {j, =} & E, then CZV** = B2V,

v

(2) If {i,z} € E or {j,z} € E, then

TY,22 TY,22
max,, {C'@-j ,C'@-j },

ifieSorjes
C;vjy,zz:

<1 <ij <)

ifi,j ¢S

max,, {ny,zz ny,zz Cwy 2w’ U {Z,j}},

where

o 2y =min{uv € XY\ Z:u,v € {i,j,x,y,z}} and
e 2w =min{uv € X\ Z:u,ve{i,jxy 2} \{2,y}}.

Proof. Let ij,oy € X \Z and z € V \ Vj; such that zy <; 2z, z,y # z,
{z,2} e EV{y,z} €E, j<iy,i<pxand z,y,z ¢ S.

(1) Let {i,z},{j,2} ¢ E. Theni <; j, j,x <t y, 2, i,y <p x,z and j <y 1,
so the neighbourhood of z in G[Vj; U {z,y, 2}| is a subset of {z,y}. We will
show that no subset of V;; U{z,y, 2z} that contains z induces an S-cycle of G.

e Let vy,v2 € Vi U{x,y} such that (vi,v9,2) is an induced S-triangle of
G. Then {v1,v2} = {x,y}, a contradiction, because x,y,z ¢ S.

e Let vi,v2,v3 € Vj;U{z, y} such that (vq,vs,vs, 2) is an induced S-square
of G. Then {v1,v3} = {x,y}, a contradiction, because {z,y} € E.
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Therefore, no subset of V;; U{x,y, 2z} that contains z induces an S-cycle of G.
By this fact and Definitions 3.2.5 and 3.2.6, it follows that

% iJ i

C?;y,zz c B;'t:]y } w(C’“fc-y’Zz) < w(B?Cy) } N
T TY,Z% T TY,Z2
Bijy S Cz’jy w(Bijy) < w(Cijy )

= w(CI™) = w(BLY) = CZ = B,

(2) Let {i,2} € E or {j,2} € E.

Let j ¢ ijy’zz. By this fact, Observation 3.2.1(1) and Definition 3.2.6, it
follows that

TY, 22 TY, 22 TY,2%
OV e e }: w(CIY)

Ty,z2 TY, 22
Coij €

e AR
TY,z2 TY,22
w(ngj ) < w(cijy )
TY,22\ TY,22 TY, 22 __ NTY,2Z
= w(C’ij ) = w(C’@j ) = Cij = C'@.j .
Let i ¢ C7;"*". Then one can as above show that Cj}"** = CZ/7*".
Let i,5 € C’ij’zz. By this fact and Observation 3.2.1(3), it follows that (i)
Cii"\ i, 5} € Vs

Case 1: Let i€ Sorj€S.

o Let {i,z} € E. Then either

T <tz <<t1<¢]<¢y
1,y <p T,2

} = {i,z},{y,2} € £

or
i<tj<tyvz
r<i % = {i,y},{z, 2} € E.
Y<pz<p<it<px

Assume that the former inequalities hold.
— If {i,y} € E, then (i, z,y) is an induced S-triangle of G, a contra-
diction.

— If {z,z} € E, then (i, z, 2z) is an induced S-triangle of G, a contra-
diction.

— If {i,y},{z, 2z} ¢ E, then (i, x,y, z) is an induced S-square of G, a
contradiction.

Likewise, assuming that the latter inequalities hold.
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Case 2: Let i, ¢ S. We define the following ordered crossing vertex pairs:

o 2y =min{uv € X\ Z:u,v e {i,j,x,y,z,w}},
o 2w =min{uv € X\Z:u,v e {i,j,z,y,z,w}\{z,y}} and

o da =min{uuw e Z:ue{i,jz,y 2} \{, v, 2 w'}}

We will show that if a subset of V;;U{2’,y/, 2/, w’, a’} that contains ¢’ induces
an S-cycle of G, then its non-empty intersection with V;; is not a subset of

To oo

'y’ 2w
CLij
o Let vy,v9 € Vyj U {2/, ¢/, 2/, w'} such that (vi,v2,d’) is an induced S-
triangle of G. Since /.y, 2/, w" ¢ S, without loss of generality, assume
that v1 € S = v; € V;;. Then either

¥ < 2 <<ad < <)
U1, 3/, <p xly Z/) CL,

} = {v1,2'},{v1,7'} € F

or

/ /A
v, <y y,w,a , ,

/ ; /7 7 / = {Ulay}7{vl7w}€E'
Y <pw <p<a <pv1 <pT

Assume that the former inequalities hold.

— If {«/,2'} € E, then (vq,2/,2’) is an induced S-triangle of G.

— If {v1,y'} € E, then (v1,2’,y') is an induced S-triangle of G.

— If {2/, 2"}, {v1,9'} ¢ E, then (v1,2’,y, 2’} is induced an S-square of
G.

A

Therefore, vy ¢ Cig 2 ikewise, assuming that the latter inequalities
hold.

o Let vy, v2,v3 € Ve U{z’, ¢/, 2/, w'} such that (vi, v2, v3,d) is an induced
S-square of G. Assuming that v; € S or v3 € S, one can as above show
that the S-vertex is not an element of Cig W Assume that vy € S.

Since 2/, y/, 2/, w' ¢ S, va € V<j;. Then either

/ /
V2, X <t a <gU1,Us / /
’ ;5 = {v, 2’ {vs, 2’ e E
V1,03 <p U2 <p X',0Q

or

V1,03 <p V2 <p y’ a’ / /
Ty p ’ = {v,y'}, {v3, ¥/} € E.
v,y <ga <t V1,03

Assume that the former inequalities hold.
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— If {vg,2'} € E, then (v, va,2’) is an induced S-triangle of G.
— If {vg,2'} ¢ E, then (v1,v9,v3,2’) is an induced S-square of G.

acy 2w’

Therefore, {v1,ve,v3} N V<4 is not a subset of C . Likewise, as-

suming that the latter inequalities hold.

Therefore, if a subset of Vi;; U {2/,y/,2',w’,a’} that contains a’ induces an
S-cycle of G, then its non-empty intersection with V;; is not a subset of

1o !

C¥¥*"" By this fact, (i) and Definitions 3.2.6 and 3.2.7, it follows that

<ij
:J:y,zz \ {Z j} c Cﬁg 2w } _ w(cxy 27 \ {Z ]}) < w(cig 7zw) }

Cifé Ui g} e w(CZY Y Ui 5}) < w(CEPF)

= w(CfP™) = w(CZY 7 Ui j)) = G = e Uiy O

Lemma 3.2.11. Let ij,zy,zw € X \ Z such that xy <; zw, x,y # z,w,
{z,w},{y,z} € E, j <t y,w, i <px,z and z,y,z,w ¢ S.
(1) If {i,w} ¢ E, then C’ij’zw = ijy’zz.
(2) If {j.2) ¢ . then G20 = 2V,
(3) If {i,w},{j, 2} € E, then
max, { CZL, T
ifieSorjes
CrYAW

2]
max,, {ny ,ZW Amy,zw Axy 2w’ U{i,j}},

<1 <ig <ij

ifi,j &5

where

o o'y =ming{uv € X\ Z :u,v € {i,j,x,y,z,w}} and
o 2w =min{uv € X\ Z:u,ve{i,jz,y,zw}\{z,v}}

Proof. Let ij,zy,zw € X \ Z such that xy <; 2w, z,y # z,w, {z,w},{y, 2z} €
E, j<iy,w,i<pz,zand z,y,z,w ¢ S.

(1) Let {i,w} ¢ E. Theni <; j <t y,w, x <t y,2z, 2 <¢ w, j <p i <pw <p 2
and i,y <p ,w, so the neighbourhood of w in G[Vj; U{z,y, z,w}] is a subset
of {z,y,z}. We will show that if a subset of Vj; U {z,y,2,w} that contains
w induces an S-cycle of G, then its non-empty intersection with V;; is not a
subset of ijy’zz.
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e Let vy, vy € Vi U{x,y, 2} such that (vi,vs, w) is an induced S-triangle
of G. Then {v1,v2} C {x,y, 2z}, a contradiction, because x,y, z,w ¢ S.

o Let vi,v2,v3 € Vi U {x,y, 2} such that (vy,ve,v3,w) is an induced S-
square of G. Then {vi,v3} C {z,y,2} and, since z,y,z,w ¢ S, vy € S
= vy € V5.

— Assuming that {v1,v3} = {z,y} or {y,z} yields a contradiction,
because {z,y},{y,z} € E.

— Assume that {vi,v3} = {z,2}. If {z,z} € E, this yields a contra-
diction. If {x,z} ¢ E, then (z,v9, z,y) is an induced S-square of
G, sova ¢ G077

Therefore, if a subset of V;; U {z,y,z,w} that contains w induces an S-cycle
of G, then its non-empty intersection with V;; is not a subset of C;/"**. By
this fact and Definitions 3.2.6 and 3.2.7, it follows that

TY,ZW TY,22 TY,Z2W TY,22

i €Cy w(Cy") < w(C")

Ca:y 22 Ca:y ,ZW = =
]

w(CZa;y,zz> < w(Cixjy,zw)
= W(CIE) = w(CEV) = CEVA = O,

(2) Let {j, 2} ¢ E. Then one can as in (1) show that C;;"*" = C7"™".
(3) Let {i,w), {j, 2} € B
Let j ¢ C’ij’zw. By this fact, Observation 3.2.1(1) and Definition 3.2.7, it

follows that
ny,zw ny],zw }:> w(C;cjy,zw) (Ca:yjzw) }:>
w

<w
Oigj],zw c ny ,ZW (ngz/],zw) < w (sz]y Zw)

= wW(CI?) = w(CF?) = CIF = O,

Let i ¢ C"fp-y #_ Then one can as above show that C"fp-y = ngzw

Let i,j € C;"*". By this fact and Observation 3.2.1(3), it follows that (i)
C.Zy ,2W \ {1/ ]} C V<Zj

Case 1: Let i€ Sorje S.

o If {i,z} € E, then (i, j, z) is an induced S-triangle of G, a contradiction.

e If {j,w} € E, then (i, j,w) is an induced S-triangle of G, a contradiction.
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o If {i,z},{j,w} ¢ E, then (i,j,z,w) is an induced S-square of G, a
contradiction.

Case 2: Let i,7 ¢ S. We define the following ordered crossing vertex pairs:

o o'y =ming{uv € X\ Z:u,v € {4,j,x,y,z,w}},
o 2w =min{uv € X\Z:u,ve€{i,jz,y,zw}\{z,vy}} and

e AV = min{uv € X\ Z:u,ve{i,jzy zw}\{z, vy, 2 w}}.

We will show that if a subset of Vi;; U {a,y/, 2/, w’,a/,b'} that contains o
and/or b" induces an S-cycle of G, then its non-empty intersection with V;;

! g

. z'y 2w
is not a subset of C_; 7 .
o Let v1,v3 € (X \ {i,5}) U{a,y,2/,w,a'} such that (vi,ve,b') is an
induced S-triangle of G. Since 2/,y, 2/, w',a’,b' ¢ S, without loss of
generality, assume that v1 € S = v1 € V5. Then

/ / / /
U1,T <ty7w>b

/ /
E.
Y <pw <pb <puvr <pa }é{vl,y},{vl,w}e

— If {v1,2'} € E, then (vy,2/,y) is an induced S-triangle of G.
— If {¢/,w'} € E, then (v1,y’,w’) is an induced S-triangle of G.

— If {vy, 2"}, {y,w'} ¢ E, then (vy,y/,2',w') is an induced S-square
of G.

o Let v1,v2,v3 € Vi U{a,y/, 2/, w', a’} such that (vq,v2,v3,b) is an S-

square of GG. Assuming that v; € S or v3 € S, one can as above show
1.0 1,37

that the S-vertex is not an element of Cig W Assume that v € S.

Since ', y/, 2/, w',d’, b/ ¢ S, va € V5. Then

vy, v3 <g v2 <p Y, b

/ /
L.
Ug,y, <p v <p V1, V3 } = {vlvy },{Ug,y} €

— If {vy,9y'} € E, then (v1,v9,9') is an induced S-triangle of G. If
v1 = a’, then

x <t a’ <t Vo <p y'

/
y <p vy <p ', d }:>{U27x}EE°
)

Consequently, (vy, 2’,9') is an induced S-triangle of G.
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— If {ve,y'} ¢ E, then (v1,v2,v3,y’) is an induced S-square of G. If,
without loss of generality, v1 = @, then

o << <pd <pua<i )

/ !
vy <y <p a2 dl } = {ve,2'},{v2,7'} € E.

Consequently, if {2/,2'} € E, then (vy,2’,2') is an induced S-
triangle of G and if {a/,2'} ¢ E, then (ve,2’,y/,2") is an induced
S-square of G.

e One can as above show that if a subset of V;; U{z’, v/, ', ', d/, ¥’} that
contains a’ induces an S-cycle of G, then its non-empty intersection with

l'/y/,Z/UJ/

V<ij is not a subset of C<ij
Therefore, if a subset of V;; U {2/,y/,2',w’,d’,b'} that contains a’ and/or b/
induces an S-cycle of G, then its non-empty intersection with V;; is not a
subset of Cilg’z " By this fact, (i) and Definition 3.2.7, it follows that
ijy,zw \ {i,j} € ng 2w } ~ w(cij,zw \ {i,j}) < w(ci;; ,zw) } ~

CLy Uiy e e [T w(CEE Y Ui Y) < w(Cl)

= w(ijy’Zw) = w(Ci% Ui, ) = ijy’zw = Cig A UR A S
Theorem 3.2.12. The dynamic programming algorithm shown in Figure 3.2
returns an S-feedback vertex set of G that has minimum weight in O(m?) time.

Proof. The correctness of the algorithm follows from Lemmas 3.2.2-3.2.11.
The computation of £, R and all predecessors of Definition 3.2.1 takes O(n?m)
time. The computation of a single A-set, B-set or C-set takes constant time.
The number of iterations performed is

o> 1+Z<1+21> = O(m?).

ijeX ryeX ZwWeX

Therefore, the total time complexity of the algorithm is O(m?). O



64 CHAPTER 3. SOLVING SFVS IN POLYNOMIAL TIME

compute a list £ containing all ordered crossing vertex pairs of X
sorted in descending order with respect to <§“,
a list R containing all ordered crossing vertex pairs of X
sorted in ascending order with respect to <!

and all predecessors of Definition 3.2.1;

for ij in R
compute A;; according to Lemmas 3.2.2 and 3.2.7;
for zy in reverse £
if z € Vj; or y € V;; then continue;
compute Bixjy according to Lemmas 3.2.3, 3.2.4, 3.2.8 and 3.2.9;
if x#£y
for zw in reverse L starting from zw := xy
if not all the conditions of the definition of ijy’zw are met then continue;
compute ijy’zw according to Lemmas 3.2.5, 3.2.6, 3.2.10 and 3.2.11;
end for
end if
end for
end for

return V' \ A;(,n;

Figure 3.2: Our dynamic programming algorithm for solving SFVS on a per-
mutation graph.



Chapter 4

Concluding Remarks

4.1 The New State of FVS and SFVS

FVS is a well-known and well-studied problem of Algorithmic Graph The-
ory. It is N'P-complete on general graphs, planar graphs, bipartite graphs and
planar bipartite graphs. The list of graph classes on which it is P includes in-
terval graphs, permutation graphs, trapezoid graphs, cocomparability graphs
and convex bipartite graphs, AT-free graphs, chordal graphs and graphs of
bounded cliquewidth. In Chapter 2, we proposed novel dynamic program-
ming algorithms for solving F'VS on interval graphs and permutation graphs
that excibited the same time complexity as their respective best known coun-
terparts found in literature. Figure 4.1 is an updated version of Figure 1.4
that includes our aforementioned results.

In this thesis we studied SF'VS, a generalization of FVS that is not as well-
studied as FVS. The fact that SFVS is a generalization of FVS implies that it
is N'P-complete on general graphs, planar graphs, bipartite graphs and planar
bipartite graphs as well. The first significant difference in the behaviour of the
two problems is that, unlike FVS which is P on chordal graphs, SFVS was
shown to be AP-complete on split graphs, a subclass of chordal graphs. Also
unlike FVS, there is no polynomial result where the input is restricted to graph
classes regarding SFVS to be found in literature. In Chapter 3, we proposed
novel dynamic programming algorithms for solving SFVS on interval graphs
in O(n +m + 1) time where [ € O(n?) is the number of triangles in the input
graph and on permutation graphs in O(m?) time—the first polynomial results
regarding SFVS. Figure 4.2 is an updated version of Figure 1.5 that includes

65



66 CHAPTER 4. CONCLUDING REMARKS

0(n®m?) [23]

bipartite {(vo, V1) ey Vo1 )i
n = 5}-free

planar bipartite

[ bounded cliquewidth ] interval permutation
0(n) [28,19] o(n + m) [27] 0o(nm) [24]
o(n + m) * O(nm) x

Figure 4.1: Best known results regarding F'VS on the listed graph classes. Our
results are indicated by a star (x).

our aforementioned results.

4.2 Future Work and Open Problems

Trapezoid graphs are a superclass of permutation graphs whose intersec-
tion model naturally generalizes the intersection model of permutation graphs.
Thus, we believe that, by defining an appropriate notion of ordered crossing
vertex pairs, our novel dynamic programming approach can be adjusted to
operate on trapezoid graphs and we will be pursuing this in the immediate
future.

Graph classes lying on the hierarchy path from permutation graphs to AT-
free graphs are not the only ones on which FVS behaviour is known and SFVS
behaviour remains unknown, however. For example, even though SFVS was
shown to be N'P-complete on split graphs, another well-studied subclass of
chordal graphs is the one of strongly chordal graphs. Is SFVS NP-complete
on strongly chordal graphs as well or can a polynomial algorithm solving it on
them be found?
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bipartite (v, V1) oy Vo1 )t AT-free
n = 5}-free

planar bipartite convex bipartite chordal cocomparability

\ 4

split [ strongly chordal ] trapezoid
\4 A 4

[ bounded cliquewidth ] interval permutation
Lo |

Figure 4.2: Best known results regarding SFVS on the listed graph classes.
Our results are indicated by a star (x).

Graphs of bounded cliquewidth are yet another graph class that is worth
investigating. FVS is P on graphs of bounded cliquewidth. Many classical
graph classes that we do not mention in this thesis are classes of graphs of
bounded cliquewidth. This implies that FVS is P on all those graph classes.
Is SFVS P on graphs of bounded cliquewidth as well? If not, is it perhaps P
on graphs of a bounded graph parameter stricter than cliquewidth?
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Appendix A

Miscellaneous Mathematical
Concepts

partition

A partition of a set S is a collection of pairwise disjoint subsets of S that
its union is S.

permutation

A permutation of a set S is a one-to-one correspondence of elements of S to
elements of S. A permutation is commonly presented as a 2 X |S| matrix where
for each column the permutation maps the element of the first row to the ele-
ment of the second row. For example, the permutation 7 of {1,2,3,4,5,6,7,8}
where m(1) = 2, 7(2) =8, 7(3) =6, 7(4) =3, n(5) =1, w(6) =7, n(7) =4

and 7(8) =5 is
(12 8
T2 8 5 )

relation, partial order, total order, linear extention

345 67
6 3 1 7 4

A (binary) relation on a set S is a set R C S%. We commonly denote an
inclusion in a relation as we would denote an action of a binary operation;
that is, for a relation R on S, we consider 2Ry to be equivalent to (z,y) € R
for all x,y € S.
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A relation R on a set S may satisfy any number of the properties listed
below:

eVzecS:2Rx (reflezivity)
e VzreS: 2R (irreflexivity)
o Vuz,yzeS:(xRyANyRz) — xRz (transitivity)
eVa,yeS:(aRyAyRz) >z =1y (antisymmetry)
eVz,yeS:xRyVyRe (totality)

We say that two elements x, y of S for which Ry V yRz holds are comparable
(with respect to R).

A partial order on a set S is a relation on S that is reflexive, transitive and
antisymmetric. A total order on S is a partial order on S that is also total.

A linear extention of a partial order R on a set S is a total order £ on S
such that
TRy = Ly

forall z,y € S.
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